Old Dommion University Research foundation

o -4

) }J <f‘f - 2{2;;

. thx

DEPARTMENT OF CIVIL ENGINEERING
COLLEGE OF ENGINEERING & TECHNOLOGY
OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

PARALLEL-VECTOR COMPUTATION FOR STRUCTURAL
ANALYSIS AND NONLINEAR UNCONSTRAINED
OPTIMIZATION PROBLEMS

By

Duc T. Nguyen, Principal Investigator

Final Report
For the period ended June 15, 1990

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Master Contract Agroement NAS1-18584
Task Authorigation No. 59

Dr. Jaroslaw Sobieski, Technical Monitor
Interdisciplinary Research Office

September 1990

(MASA-LR-185K516) PAXALLEL-VECTOR N92-2T3T4
COMPUTATINN FOR STRUCTURAL ANALYSIS AND

NONLINEAR UNCONSTRAINED UPTIMIZATION

PROYLEMS Final Report, period endini 15 Jun. unclas
1990 (014 Dominion uUniv.) 558 p G3/39 0308244

0ld Dominion University Research Foundation is a not-for-
profit corporation closely affiliated with 0l1d Dominion
University and serves as the University's fiscal and
administrative agent for sponsored programs.

Any questions or comments concerning the material con-
tained in this report should be addressed to:

Executive Director

01d Dominion University Research Foundation
P. O. Box 6369

Norfolk, Virginia 23508-0369

Telephone: - (804) 683-4293
Fax Number: (804) 683-5290

o -4

DEPARTMENT OF CIVIL ENGINEERING
COLLEGE OF ENGINEERING & TECHNOLOGY
OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

PARALLEL-VECTOR COMPUTATION FOR STRUCTURAL
ANALYSIS8 AND NONLINEAR UNCONSTRAINED
OPTIMIZATION PROBLEMS

By

Duc T. Nguyen, Principal Investigator

Final Report
For the period ended June 15, 1990

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Master Contract Agreement NAS1-18584
Task Authorization No. 59

Dr. Jaroslaw Sobieski, Technical Monitor
Interdisciplinary Research Office

Submitted by the

014 Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

September 1990

TABLE OF CONTENTS

Page
I. OBJECTIVE AND MOTIVATION. ¢ttt iiiiiieaa oo 1
ITI. STRUCTURAL ANALYSIS ittt ittt iiaieranon s 3

2.1 General Description of SAP-4 Code............ ..o, 4

2.2 Modification of SAP-4 to PV-SAP....... 4

2.3 Static Application of PV-SAP Code.............c0vvinnninnnnn 5
ITII. STRUCTURAL OPTIMIZATION.ttt siannreormenanns 8

3.1 Parallel Golden Block Search Technique...................... 12

3.2 Parallel-Vector BFGS Method............. ..o 17
IV. CONCLUSIONS AND FUTURE RESEARCH.......... ... 23
ACKNOWLEDGMENT . . ot oottt i ettt s s aaeaiaataneaanom e e e ana e 23
REFERENCES . . ittt it ettt e ete ittt sasasanae s aa s asiaaa s 24
APPENDIX A: NASA Technical Memorandum 102614......................... 25
APPENDIX B: Parallel FORTRAN Listing of Subroutine Golden Block...... 46
APPENDIX C: Parallel FORTRAN Listing of Subroutine BFGS.............. 50
APPENDIX D: SAP-4 Manual.......... ...t iiieneannaansan 65
APPENDIX E: Parallel FORTRAN Listing of PV-SAP Code.................. 246

iii

PRECEDING PAGE BLANK NOT FILMED

I. OBJECTIVE AND MOTIVATION

Practical engineering application can often be formulated in the form of
a constrained optimization problem. There are several solution algorithms
for solving a constrained optimization problem. One approach is to convert a
constrained problem into a series of unconstrained problems. Furthermore,
unconstrained solution algorithms can be used as part of the constrained
solution algorithms. Structural optimization is an iterative process where
one starts with an initial design, a finite element structure analysis is
then performed to calculate the response of the system (such as displace-
ments, stresses, eigenvalues, etc.). Based upon the sensitivity information
on the objective and constraint functions, an optimizer such as ADS (Ref. 1)
or IDESIGN (Ref. 2), can be used to find the new, improved design. The
entire process can be summarized in Figure 1.

From Figure 1, it can be identified that a major computational effort
occurs in the structural analysis phase to find the static solution, the
eigenvalue solution, and/or the dynamic solution of the governing equations
of motion.

For the structural analysis phase, the equation solver for the system of
simultaneous, linear equations plays a key role since it is needed for either
static, or eigenvalue, or dynamic analysis. The equation solver is also
needed for the sensitivity analysis and optimization phase.

For practical, large-scale structural analysis-synthesis applications,
computational time can be excessively large. Thus, it is necessary to have a
new structural analysis-synthesis code which employs new solution algorithms
to exploit both parallel and vector capabilities offered by modern, high
performance computers (available at NASA Langley Research Center) such as the

Convex, Cray-2 and Cray-YMP computers.

start b = go = initial design

.
v
1 =

Dg 1 NSU

l

Static:

Structural Analysis

COMET NICE/SPAR , SAP-4

[K] {u} = (F)

Eigenvalue: (K] [&] = [A] [M] [®]

Dynamic:

[M] {u} + [C] (u) + [K] (u) = (F(t))}

Linear/Nonlinear Capabilities

|

SENSITIVITY ANALYSIS

ay ay
Ex: _0 and __i
- -
adb db
CONTINUE

NO

A

OPTIMAL DESIGN

=>r+l o>r r -r
b - b +a s

Ex: ADS, IDESIGN

l

l CONVERGE ?I

Figure 1.

A General Flow Chart for Structural Optimization.

A

YES

~

Y

3

The objectives of this research project are, therefore, to incorporate
the latest development in the parallel-vector equation solver, PVSOLVE (See
Appendix A) into the widely popular finite-element production code, such as
the SAP-4 (See Appendix D). Furthermore, several nonlinear unconstrained
optimization subroutines have also been developed and tested under a parallel
computer environment. These unconstrained optimization subroutines are not
only useful in their own right, but they can also be incorporated into a more

popular constrained optimization code, such as ADS (Ref. 1).

ITI. STRUCTURAL ANALYSIS
There are many finite-element based structural analysis codes available
in the literature. The SAP-4 code (See Appendix D) has been selected in this
research project due to the following four main reasons.

1. SAP-4 code is in the public domain. The FORTRAN source code is
available to all users and the code can be modified to incorporate
new numerical algorithms.

2. SAP-4 code has a good number of finite element libraries and has
options for static, eigenvalue, and dynamic analysis.

3. Both the in-core, and out-of-core solution options are available in
SAP-4. Thus, large scale finite-element models can be handled by
the code.

4, SAP-4 code has been written in a modular fashion, thus new capa-

bilities can be added to the code without too much effort.

2.1 General Description of SAP-4 Code
SAP-4 is a general purpose, finite-element code which has been developed
and widely used in the industries, government laboratories, and academia in

the 1970's. SAP-4 finite element library includes:

. Three-dimensional truss element

. Three-dimensional beam element

. Plane stress, plane strain and axisymmetric elements
. Three-dimensional solid element

. Thick shell element

. Thin plate and shell element
. Boundary element
. Pipe element

The following linear finite element analysis capabilities of SAP-4 are

available
. Static analysis
. Calculation of frequencies and mode shapes
. Dynamic analysis

For a more detailed description of SAP-4 code, a complete SAP-4 manual

is given in Appendix D.

2.2 Modification of SAP-4 to PV-SAP
(Parallel-Vector Structural Analysis Program)

In order to incorporate the newly developed Parallel-Vector equation
SOLVEr, PVSOLVE (See Appendix A) into the SAP-4 code, the following modifi-
cations have been made in the SAP-4 code:

. Calculating the address of the diagonal terms of the (one-

dimensional) coefficient stiffness matrix.

. Assembling the global coefficient stiffness matrix in a row-
oriented, variable band fashion.

. Solving the system of simultaneous linear equations by PVSOLVE.
The complete listing of the new code, PV-SAP, is given in APPENDIX

E.

2.3 Static Application of PV-SAP Code
In order to evaluate the performance of the new PV-SAP code as compared

to the original SAP-4 code, the following examples have been considered.

Example 1: Two-Hundred Bay, Ten Sto 2D) Truss Structure

The geometrical pattern as well as the load of this structure is shown
in Figure 2. Computational time (using subroutine timef) for the new PV-SAP
code, and the original SAP-4 code (using the Cray-2 super computer at NASA
Langley Research Center) is shown in Table 1. A parallel speed-up factor of
3.59 (which corresponds to a total equation solver time of 1.05 seconds) was
achieved in this example when 4 Cray-2 processors were used. Furthermore,
when one processor was used, the new code PV-SAP used only 3.76 seconds as
compared to 15.47 seconds from the original SAP-4 code. This significant
reduction in time (even for one processor) is due to the fact that the new
equation solver (See Appendix A) in PV-SAP has utilized the loop-unrolling
technique for better vector speed. In this example, PV-SAP code is 14.75

times faster than the original SAP-4 code.

Example 2: One Hundred Fifty Bay, Ten Story (2D) Frame Structure
The geometrical pattern and the load of this structure is shown in

Figure 3. Computational time (using subroutine timef) for the new PV-SAP

200 bays

Figure 2: Geometrical Pattern and Loads of Example 1

7777 777 »rr 7 777

T«

150 bays

Figure 3: Geometrical Pattern and Loads of Example 2

10 stories

Table 1. Performance of PV-SAP vs. SAP-4 Code on Example 1.
Total Equation Speed Total Equation
No. of Solver Time Up Solver Time Speed Up
Processors (using seconds) (using seconds) (using timef) (using timef)
1 3.82 1.00 3.762 1.000
(SAP-4 = 12.48) (SAP-4=15.469)
2 2.04 1.87 1.945 1.934
3 1.49 2.56 N/A N/A
4 1.23 3.11 1.049 3.586
Table 2. Performance of PV-SAP vs. SAP-4 Code on Example 2.
Total Equation Speed Total Equation
No. of Solver Time Up Solver Time Speed Up
Processors (using seconds) (using seconds) (using timef) (using timef)
1 5.24 1.00 5.123 1.00
(SAP-4 = 16.47) (SAP-4=15.469)
2 2.86 1.83 2.657 1.928
3 2.02 2.59 N/A N/A
4 1.81 2.90 1.414 3.623

code, and the original SAP-4 code (using the Cray-2 supercomputer at NASA
Langley Research Center) is shown in Table 2. 1In this example, PV-SAP code

is 10.94 times faster than the original SAP-4 code.

Example 3: Two Hupdred ty Ba ve Sto D) Frame Structure
The geometrical pattern and the load of this structure is the same as
shown in Figure 3, except for the number of bays and the number of stories.
Computational time (using subroutine timef) for the new PV-SAP code, and
the original SAP-4 code (using the Cray-2 super computer at NASA Langley
Research Center) is shown in Table 3. 1In this example, PV-SAP code is 15.65

times faster than the original SAP-4 code.

III. STRUCTURAL OPTIMIZATION
The purpose of Design Optimization is searching for the best solution
with a limited resource. In many engineering applications, design optimi-
zation starts with formulating the problem and follows by solving it using a
mathematical programming technique. The general formulation of a design

optimization problem is given as

min £(b,x)
beRD (3.1)
subject to
gi(b,x) <0, j=1, ...m (3.2)
h(b,x) = C, k=1, ...1 (3.3)
bj; € by < bjy, 1 =1, ...n (3.4)

Table 3. Performance of PV-SAP vs. SAP-4 Code on Example 3.
Total Equation Speed Total Equation
No. of Solver Time Up Solver Time Speed Up
Processors (using seconds) (using seconds) (using timef) (using timef)
1 14.19 1.00 13.684 1.000
(SAP-4 = 56.74) (SAP-4=58,592)
2 7.24 1.96 6.995 1.956
3 5.31 2.67 N/A N/A
4 4.62 3.07 3.743 3.660

where b and x are the design and state variables, respectively. Furthermore,
the equality constraints hy(b,x) = 0, may include state equations that yield
the solution of state variables.

The above design optimization problem is generally nonlinear and it can
only be solved numerically. One class of numerical schemes is called the
direct search technique, which iteratively looks for a better design in the
design space and stops only when certain convergence criteria are satisfied.

In other words, in each iteration, the technique finds a better design as

Xnew = Xold * @P (3.5)

where a is a scalar quantity defined as the step size and P is a vector
defining a search direction to improve the solution. Usually, the search
direction, P, is the solution of a subproblem which is obtained by linear-
izing the optimal design problem, Eqs. (3.1)-(3.4). The subproblem can be
either unconstrained or constrained.

The software package, Automated Design Synthesis, or ADS (Ref. 1), can
be a good candidate for solution of the optimal design problem. ADS is a
general-purpose optimization package that offers various algorithms to find
the optimal solution. An ADS user can select one of the nine strategy
options to formulate a subproblem which subsequently can be solved by one of
the five optimizers, depending upon the formulation of the subproblem. Among
the five optimizers, Fletcher-Reeves algorithm, Davidon-Fletcher-Powell and
Braydon-Fletcher-Goldfarb-Shanno variable metric methods are used for
unconstrained subproblems and two versions of feasible direction methods for

constrained subproblems.

10

Once the search direction, P, is found, a proper step size, a, in Eq.
(3.5) is computed in order to completely define the new design Xpey- The
best a is determined in such a way that the new design can reduce the
objective, as well as correct the constraint violations. Determination of a
proper a is usually the most time consuming process in a design optimization
algorithm, because it requires many function analyses. To determine a, ADS
provides eight different one-dimensional search algorithms, among which five
find the minimum of an unconstrained function and three find the minimum of a
constrained function.

It should be noted that an ADS user should select a design optimization
algorithm which is consistent with the strategy options, the optimizers and
the one-dimensional search algorithms. That is, for example, an optimizer
for an unconstrained problem should be selected in ADS if an unconstrained
subproblem is formulated by the strategy option selected.

The ADS is a collection of subroutines. The ADS can be invoked by
calling the subroutine ADS, as follows: Call ADS (INFQ, ISTRAT, IOPT, IONED,
IPRINT, IGRAD, NDV, NCON, X, VLB, VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA,
NCOLA, WK, NRWK, IWK, NRIWK), where the integer parameters, ISTRAT, IOPT,
IONED and IPRINT are defined as:

ISTRAT: Optimization strategy to be used.

IOPT: Optimization to be used.

IONED: One-dimensional search algorithm to be used.

IPRINT: A four-digit print control.

An ADS user has the option to either require ADS to calculate function
gradients using the finite difference method or to provide function gradients
himself. The user should use the arrays DF and A in subroutine ADS to store

the gradient information. Furthermore, since the active constraint strategy

11

is employed in ADS, the user should only provide the gradients of constraints
that are active. The active constraints can be identified by the array IC.
Application examples are given in the ADS manual to demonstrate how to use
the ADS software package. Other important aspects such as restarting the

code and redefining control parameters in ADS are also detailed in the ADS

manual.

3.1 Parallel Golden Block Search Technique
In this research work, a parallel version of the Golden Block Search
technique has been developed for determining the step size a in Eq. (3.5).
Theoretical development of the Golden Block Search technique [3] is

summarized in the following paragraphs:

. The Golden Section method is based on the Fibonacci sequence, which

is defined as

F,=1; F, =1; F =F ,+F ,

where n = 2,3,4 ..,

with the properties

F

B | -r = l (1 + \/g—) ~ 1,618 = golden ratio
F 2
n-1
n-+ o
. The Fibonacci Sequence is a special case of the Arriel Sequence

L SR L

where n = 2,3,4 ...

(3.6)

12

Thus, when k = 1, then the Arriel Sequence will become the

Fibonacci Sequence

In order to apply the Arriel Sequence to modify the Golden Search

technique, we assume:

n+2 n+l
Ax Ay
- - 1, as n-—+ o (3.7)
n+l n

A Ay

and try to derive the condition for which T (refer to Eq. 3.7)
needs to be satisfied.

Derivation of a formula for ri

n+l
Multiplying to both sides of Eq. (3.7)
Akn
Altz+2 AE+1 AE+1
* S LI Ok (3.8)

n+l n n

&" A Ak

From Eq. (3.6), one has: AE*Z -k (AEH') (3.9)

Substituting Eq. (3.9) into (3.8), one obtains:

Kk (n+l + AE) - A{(1+1

N

o
wF

T - k (rk + 1) (3.10)

13

Solving the quadratic Eq. (3.10) and using only the positive root,

one has:

—

1 /2
© TS (k +\/k +4Kk)

NOTE: If k =1, then r
ko

golden section ratio

-1l 1+ 5)=1.618 = the standard

The above Golden Block Search Algorithm can be conveniently presented in

a form of a step-by-step algorithm (also refer to Figure 4).

Step 1: dg =b - a

Step 2: First block search (for i = 1)
. al =- a
0
. al - a + (l_) do where r, = l (k + \/k2+4k)
1 B k
T 2
k
. al - al + (l_) d0 where j = 2,3, ..., 2k
i j-2 K B
. parallel computation for F (a}) where j = 0,1,2,3,
Step 3: Find the value of a} which gives the minimum value of F, say
1 _ 1
aJ a,

14

F(e%)

A

Min.

Figure 4: Golden Block Search Algorithm

15

1 1
Step 4: Set r1 - a£_1 and Rl - a£+l
1 dg
Thus dB - Rl-r1 - _E_

Step 5: Subsequent ith block search (for i > 2)

i - T
%o i-1

i 1 .1 0

@ = ryq ¢t (T—) dg

k
i dg 1-1
a, = a + (=) * (r.) where j = 2,3, ..., 2k
37 %2 n k
i
compute F(aj)

Step 6: Return to step 3 if the process does not converge
Based upon the above step-by-step procedure, the parallel golden block
search algorithm has been developed, and the complete listing of this sub-

routine is given in Appendix B.

A e Example on Golden Block Search Method

Min F(x) = 2.0 + e*- 4x

use k = 4, thus, according to Eq. (3.11), one has
1
e " (4 + 16 + 16) = 4.8284271

2

16

Table & indicates that the Golden Block Search method converges in five

iterations.

An Example for Parallel Golden Block Search Method
Find t which minimizes the function

2 4 6 n
F(e) = cos(t) =1 - & + & -8 4 o+ B+ (3.12)

2! 4! 6! n!

The optimum solution is t = t* = x and F = F* = -1.0.

The following symbols are used in Table 5:

NP - number of processors used

k - the coefficient given in Eq. (3.11)
n - number of terms used in Eq. (3.12)
S - speed up factor

n - efficiency

; - convergence tolerance

The performance of the Parallel Golden Block Search algorithm is shown

in Table 5.

3.2 Parallel-Vector BFGS Method
In these methods, the Hessian rather than its inverse is updated at
every iteration. We shall present a method that is most popular and has
proved to be most effective in applications. Detailed derivation of the
method is given in Gill et al. (also see Reference 2). It is known as the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) method described as follows.
Step 1: Estimate an initial design b{0) . Choose a symmetric positive

definite matrix H(O0) as an estimate for the Hessian of the cost function. In

17

ahTeAlIcO 03 suoTjersnT gt

‘SRS TO] sues aAn 0]
3003 3T pue ‘pPOUIsl UOTIOSS USPTOD PIepue)s Syj posn Joyjne sy} ‘Z souazajsy Ul :ZION

G8¥SY 0 | ¥BYSH'O | €8VGYO | €8¥SP°O | €8YSP'O | Z8¥SY'O | Z8¥SY O | €8vsv O | €8¥GP'O | ¥BYGY'O | = (D)4
206€° T 068€° T 888€ "1 9L8€"T vL8E° T £98€° 1 098¢° T 6v8E°1 ov8e°T | s€8€°T =D
ZYasY 0 166v°0 | Sossv-o L8SY"0 G8SY°0 | €8¥VGY'O0 | v8YSY O | 96¥SH 0 ossv'0 | gssvo | = (0)d
SEOV°T 086€°T 896€°T £16€°T z06€° T 9v8e 1 GE8E" T 6LLE"T 89LE°T | e€TLE T =0

L18Y°0 0LLY O S89%°0 6097°0 865Y°0 6SSY°0 YSSY°0 0SSY -0 £56Y°0 | z8sv'0o | = (D)a
0S°1 £ELY° T 8L9%"1 AR AN LSEV"T 060V " T GEOV' T 89L€°T €TLE"T | LyvE'T =D
68918%°0 £55¥°0 Z85v°0 L6050 9£25°0 9G6%9°0 L659°0 v1S8°0 0£68°0 | OLIT'T | = (©)d
0S'1 €TLE"T LYYE'T 091Z°T £681°1 L0901 oveo-1 £506°0 98v8°0 GL°0 =D
GG80°0T | 6£0SL1°8 LL8Y"T | £98958°T | 68918%°0 €5S5¥°0 | 00LIT'T | €0T9LE"T 0°¢ = (0)d
o't | ozelLs e Gz'z | ozerezl'e 0S°T | 0ZETLE"T GL°0 | ozeTZ9 0 0°0 =D
onrea J
6 =1"C g=_C L=_=C 9=1" s=_(v=2=C £=0C z=_C T=C o=_C "ON
1931

-aTdiexy yoTess }ooTd USPToD TeTjusnbos

‘v oTqel

18

Table 5. Parallel Golden Block Search Example.
n = 600, e =1.0x 109
k
NP Time (Seconds) S n (%)
1 0.3553 1 100.
k
1 0.3381 1 100.
k
1 0.3866 1 100.
2 0.2008 1.925 96.25
3 0.13668 2.83 94.30
4 0.12797 3.02 75.60
k
1 0.48918 1 100
2 0.25147 1.95 97.3
3 0.19397 2.52 84.10
4 0.14565 3.36 84.0
k
1 0.54002 1.0 100
2 0.27735 1.95 97.4
3 0.18711 2.89 96.2
4 0.14365 3.76 94.0
k
1 0.57734 1.0 100
2 0.29258 1.973 98.7
3 0.20595 2.8033 93.4
4 0.16478 3.504 87.6

19

the absence of more information, let H(0) = I. Choose a convergence

parameter e¢. Set k = 0, and compute the gradient vector as

c(0) = Vf(b(o)) where f is an objective function.

Step 2: Calculate the norm of the gradient vector as "c(k)”. If
Hc(k)" < ¢ then stop the iterative process; otherwise continue.
Step 3: Solve the following linear system of equations to obtain the

search direction:

B pE) = _c(K)
Step 4: Compute optimum step size ay = a to minimize f(b(k) + ap(k)).

Step 5: Update the design as

b(k+1) o p(k) 4 gp(k)
Step 6: Update the Hessian approximation for the cost function as

H(k+1) o g(k) 4 p(k) 4 g(k)

where the correction matrices D(K) and E(K) are given as

T
L) ()

(),),

T
po_ _yMy e

(y(k)_ s(k)) (c

20

with s(k) - akp(k) (change in design)
y(k) = c(k+l) - c(k) change in gradient)

c(k+1) - ye(b(k+l))

Step 7: Set k = k + 1 and go to Step 2.

Notice that the first iteration of the method is the same as that for
the steepest descent method.

It can be shown that the BFGS update formula keeps the Hessian approxi-
mation positive definite if exact line search is used. This is important to
know as the search direction is guaranteed to be that of descent for the cost
function only if H(k) is positive definite. In numerical calculation, diffi-
culties can arise because Hessian can become singular or indefinite due to
inexact line search and round-off and truncation errors. Therefore, some
safeguards against the numerical difficulties must be implemented into
computer programs for stable and convergent calculations. Another numerical
procedure that is extremely useful is to update decomposed factors (Cholesky
factors) of the Hessian rather than the Hessian itself. This way the matrix
can be numerically guaranteed to be positive definite.

In this project, parallel-vector implementation of the BFGS method has
been achieved by incorporating the mixture of both the direct parallel-vector
equation solver (see Appendix A) and the iterative parallel-vector equation
solver into Step 3 of the above BFGS process. The complete listing of the
parallel BFGS code is given in Appendix C. Table 6 summarizes the
performance of the BFGS in a parallel computer environment. In Table 6,
systems of 200 and 300 coupled, nonlinear equations have been formulated as
the nonlinear, unconstrained optimization problems and were solved by the

parallel-vector BFGS method.

21

12°¢ v 10000°0 10°0 It L8°T€ 00€ X 00€

LL°T 4 T0000°0 T10°0 1T £0°8S 00€ X 00¢

00°T T T0000°0 T10°0 1T S¥° 20T 00€ X 00€

98°2 ¥ T0000°0 10°0 6 G8°vT 00Z X 002

€9°T 4 T10000°0 10°0 6 G1°92 002 X 002

00°T T T0000°0 10°0 6 0s°zv 00Z X 002

aoyoel | saossaooad soueIaTol, | soueraTol sSUoT3ReIII POURSH TOPTOS | 92Z1S weTaald

dn dix-Aed | TopTos-ssned sodd | (pebraaun)) SSneD-T{SaTOD
peeds Jo °ON JO IoCEuMN PoXT butsn soddg Io3
(-o9s) buturry, TE3OL

*JUSILIOITAUY To3ndio) TalTeTed © UT PoyioW SOdd SU3 JO souailtojiad 9 STqel

22

IV. CONCLUSIONS AND FUTURE RESEARCH

The fast parallel-vector equation solver (See Appendix A) has been
incorporated into a well-known SAP-4 finite element structural analysis code.
The new code, PV-SAP, has been tested for static applications. Initial
results have indicated that the new code, PV-SAP is 10.94 to 15.65 times
faster than the original SAP-4 code when 4 Cray-2 (at NASA Langley Research
Center) processors were used.

For the one-dimensional line search problem, the parallel Golden Block
Search method has been developed. For a simple tested problem, a speed-up
factor of 3.76 was obtained when 4 Cray-2 processors were used.

For the nonlinear unconstrained optimization problem, the parallel-
vector version of the BFGS method has been developed. Initial results have
indicated that a speed-up factor of 3.21 was obtained when 4 Cray-2
processors were used.

Practical structural optimization problems can usually be formulated in
the form of a nonlinear constrained optimization problems. All the results
obtained from this research work, however, can be directly used for the next
phase of this project. The remaining task which needs to be done is to
provide the sensitivity information for PV-SAP since this sensitivity
information is needed for many existing optimization packages, such as the

ADS in Ref. 1.

ACKNOWLEDGMENT

This research work is supported by the NASA Master Contract NAS1-18584,

Task Authorization No. 59. Portions of this work are also supported by the

23

grants from NASA Langley Research Center (NAG-1-858), and the Air Force

Office of Scientific Research (F49620-88-C-0053).

REFERENCES
1. Vanderplaats, G.N., Sugimoto, H., and Sprague, C.M. "ADS-1: a new
general -purpose optimization program." AIAA Paper No. 83-0831, presented

at the AIAA/ASME/ASCE/AHS 24th SDM Conference, Lake Tahoe, California,
May 1983.

2. Arora, J.S., Introduction to Optimum Design, McGraw-Hill, Inc., 1989.

3. Fei, J., "Parallel Computing Algorithms," 1985 (in Chinese).

24

APPENDIX A: NASA Technical Memorandum 102614

NASA Technical Memorandum 102614

A Parallel-Vector Algorithm for Rapid Structural Analysis
on High-Performance Computers

Olaf O. Storaasli, Duc T. Nguyen and Tarun K. Agarwal

NOTICE
FOR EARLY DOMESTIC DISSEMINATION

Because of its significant early commercial potenual, this
information, which has been developed under a U.S. Government
program, is being disseminaied within the United States in advance
of general publication. This information may be duplicated and used
by the recipient with the express limitation that it not be published.
Release of this information to other domestic parties by the recipient
shall be made subject to these limitauons.

Foreign release may be made only with prior NASA approval and
appropriate export licenses. This legend shall be marked on any
reproduction of this information in whole or in part.

Date for general release: _April 30, 1992
April 1990

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

A Parallel-Vector Algorithm for Rapid
Structural Analysis on High-Performance Computers

Olaf O. Storaasli
Structural Mechanics Division
NASA Langley Research Center, Hampton, VA 23665-5225

Duc T. Nguyen
Departmen: of Civil Engineering
0ld Dominion University, Norfolk, VA 23529-0369

Tarun K. Agarwal
Department of Civil Engineering
Old Dominion University, Norfolk, VA 23529-0369

Abstract

A fast, accurate Choleski method for the solution of
symmetric systems of linear equations is presented. This
direct method is based on a variable-band storage scheme and
takes advantage of column heights to reduce the number of
operations in the Choleski factorization. The method
employs parallel computation in the outermost DO-loop and
vector computation via the "loop unrolling” technique in the
innermost DO-loop. The method avoids computations with
zeros outside the column heights, and as an option, zeros
inside the band. The close relationship between Choleski
and Gauss elimination methods is examined. The minor
changes required to convert the Choleski code to a Gauss
code 1o solve non-positive-definite symmetric systems of
equations are identified. The results for two large-scale
structural analyses performed on supercomputers,
demonstrate the accuracy and speed of the method.

Nomenclature
N error norm for solution residuals
& strain energy €rror norm
(3] load vector
hpm hardware performance monitor (Cray)
i,j.k DO loop indices
ja job accounting utility (Cray)
1.9 stiffness matrix
MFLOPS Million FLoating point OPerations/Second
mj; multipliers for forward substitution
n number of equations
NP number of processors
R} error residual for soludon: {K] (x) - (f)
RAM Random Access Memory
SAXPY I ax+y, or scalar » vector + vector
second CPU time function (Cray)

SRB space shuttle Solid Rocket Booster
timef elapsed time function (Cray)

18] upper triangular, factored stiffness matrix
ujj terms of upper-triangular matrix

{x static structural displacements

1. Introduction

Since the invention of the first electronic computer by
Atanasoff to solve matrix equations of order 29 in 19391,
researchers in many scientific and engineering disciplines
have found their problems invariably reduced to solving
systems of simultaneous equations that simulate and predict
physical behavior. Currently, the solution of linear systems
of equations on advanced parallel-vector computers is a key
area of research with applications in many disciplinesz"s.
Structural analysis codes in wide use today were developed
on single processor computers and often do not fully exploit
the vector or parallel processing capability of modem high-
performance computers. To achieve a high level of
efficiency on parallel-vector supercompulers, a restructuring
of the equation solution procedure and the memory and data
management of these structural analysis codes is required.
For example, the skyline storage technique used in many
sequential structural analysis codes lacks the efficiency of
other storage techniques used in the solution of lincar
systems of equations on vector compulers7'3. Of equal
importance, several parallel equation solvers have been
demonstrated to work well for static and dynamic structural
analyses, eigenvalue and buckling analyses, sensitivity
analysis and structural optimizat.ion9'l5. Since high-
performance computers currently have both parallel and
vector capability, the algorithms that exploit both will
achieve optimal performance for these computers.

Based on favorable experience on sequential computers, a
parallel-vector Choleski algorithm using a skyline storage
scheme was developed and shown to have excellent parallel
performance on a Cray 2 supercompuler as the number of
processors increased16. However, the skyline scheme was
found to prohibit the traditional loop unroiling technique
used to optimize vector performance, so a less powerful
“vector unrolling” strategy was uscd.

The present paper describes a new algonithm that overcomes
the deficiency of skyline storage by using a variable-band
storage scheme. The objective of this paper is to describe
this new algorithm for solving matrix equations and to
demonstrate its accuracy and speed by solving large-scale
structural analysis applications on Cray supercomputers.

Since equation solution algorithms depend on the storage
scheme selected, two of the storage schemes used most
often are discussed in Section 2 of the present paper. A
description of how the basic Choleski method was
implemented o achieve both vector and parallel speed is
discussed in Section 3. The parallel FORTRAN language,
Forcel7, used 1o implement this method, is also discussed
in Section 3. The results obtained for two large-scale
structural analysis problems to evaluate the performance of
the algorithm are discussed in Section 4. The minor
changes required to convert this newly-developed code from a
Choleski algorithm to a Gauss algorithm for solving non-
positive-definite symmetric systems of equations are
identified with examples in Appendix A. A description of
the input data with a simple example is in Appendix B. A
listing of the code and its use, both in a stand-alone mode

and in the CSM Testbed18, is described in Appendix C.

2. Data Storage Schemes

The Choleski method for the solution of simultaneous
equations requires the decomposition of the matrix of
stiffness coefficients, [K], into an upper-triangular, factored
stiffness matrix, {U]. Details of this matrix decomposition
are given in Section 3 and Appendix A. Two methods most
often used in structural analysis codes to store [U] are the
variablc-band, and skyline techniqucs.

For large finite-element applications, the user defines the
geometry, finite elements and loads of the finite-element
model. The user may use automated algorithms to reorder
the resulting stiffness matrix, {K], in the form that is most
efficient for the solver. The reverse Cuthill-McKee

algorithmw reorders the [K] matrix into a near minimum
bandwidth, and thus is used for the examples in this paper.

In a row-oriented, variable-bandwidth Choleski approach, the
bandwidth of each row of the upper-triangular matrix, [U], is
defined as the number of coefTicients from a diagonal term to
the last non-zero coefficient of the row, excluding the
diagonal term. The coefficients of the stiffness matrix fora
stiffened panel with a circular cutout (bottom of Fig. 1), are
plotted in a variable-band format as shown in Fig. 1.

Fig. 1 Variable-band row storage of panel matrix.

The coefficients of the matrix are stored by rows where each
row represents a degree of freedom in the finite-element
model. The variable-band storage includes all zero
coefficients within the so called "profile” which is defined by
the ragged right edge of the matrix represented in Fig. 1.
Variable-band storage requires less memory than earlier
schemes which stored all coefficients within the maximum
bandwidth, since earlier schemes stored and operated on
many zeros outside the variable-band profile.

The same panel stiffness matrix is stored by columns in the
skyline format, like skyscrapers, in Fig. 2 from each
diagonal coefficient up to the last nonzero directly above it.

AR S SNESY

Fig. 2 Skyline column storage of panel matrix.

In this column-oriented storage scheme, the column height
is defined as the number of coefficients from a diagonal
coefficient to the last nonzero coefficient in the same
column, excluding the diagonal coefficient, as shown in Fig.
2. This skyline format requires fewer coefficients to store
and operate on during equation solution as indicated by the
many zeros (white spaces) in Fig. 2. The panel example is
used for illustrative purposes only, as in many applications,
the reduction in storage offered by the skyline approach is
not so pronounced.

Factorization of a matrix using skyline storage has the
advantage that calculations with zeros outside the skyline
need not be performed since zeros remain in these locations
after factorization. Although the skyline method has the
advantage of minimizing the storage and number of
operations required on sequential computers, it cannot
achieve optimal vector speed on high-performance computers
since it cannot use efficient SAXPY operations (i.e., T ax +
y, or scalar = vector + vector). SAXPY operations achieve
optimal performance on vector computers since they
continually stream operations to separate add and multiply
units which can operate simultaneously.

To compare the storage schemes in detail, the location of the
coefficients in the upper half of a 9x9 symmetric stiffness
matrix are shown in Fig. 3 as a simple illustrative example.

120 4
56 789 k=2
1011 00
141516 0 019
2021 22 024 [«
25 26 028 |[«i=6
293031
3233
L 34 |

Fig. 3 Variable-band storage of stiffness matrix.

The non-zcro integers in Fig. 3 are the index (location) of
each stiffness coefficient stored contiguously in a one-
dimensional array. The 34 matrix coefficients are numbered
row-wise according to a variable-band storage scheme, where
for illustrative purposes, the seven zeros are stored within
five of the rows. The skyline storage scheme requires only
29 locations to store the same matrix, since the five zeros
in columns 3, 7 and 8 in Fig. 3 fall outside the skyline and
need not be stored. The two zeros in row 3 must be stored
in both the variable-band and skyline storage schemes since
they may become non-zero during factorization. The
bandwidth of row 2 in Fig. 3 is 4, excluding the diagonal
coefficient, and the height of column 6 is 4, excluding the
diagonal coefficient.

~
~

The parallel-vector Choleski method, described in Section 3,
uses a vanable-band storage scheme 1o achieve optimal
vector performance combined with the skyline column
heights to avoid calculations with zeros outside the skyline.

3. Parallel-Vector Choleski Method Development
Basic Sequential Choleski Method

In the sequential Choleski method, a symmetric, positive-
definite stiffness matrix, K], can be decomposed as

Ki=UTm M

with the coefficients of the upper-triangular matrix, [U}:

"ij=0 for i>j 2)
K,;.
i .
u =VKyy: “1j=61—11 forjz1 ®
i-1
uy = Kjj - Qul forisl @)
k=1

1-1
Kij - > uyit;
u.. = k=l

Y Ui

for i, j >1)]

When j=i, the numerator of Eq. 5 is identical to Eq. 4
without the square root operation, which simplifies coding.

Regardless of whether the Choleski or Gauss method is used
(see Appendix A), the basic skeleton FORTRAN sequential
code for matrix factorization is given in Fig. 4 with
comments inserted to explain the connection to Egs. 3-5.

DO 1 i=row#l, row#n
DO 2 k = top row# of ith column, i-1

c compute multiplication factor, xmuit
xmult = Udk,i)
cgauss xmult = U(k.k) « U(k,i) replaces above statement

DO 3 j=1i, k + row length of row k
c calculate the numerator of Eq. S
U(ig) = K(iyg) - xmult = Uk)
3 Continue
2 Continue
c calculate final value of U(i,i) as in Eq. 4
U(i,1) = SQRTU(,1)
remove above statement
c DO loop 4 divides the numerator of Eq. 5 by u;;
xinv = 1/UQ,1)
DO 4 j=i+l, i+ row length of row i
U(ig) = U@,j) = xinv
4 Continue
1 Continue
Fig. 4 Sequential Choleski variable-band
skeleton code for matrix factorization.

To use the Gauss solution method (i.e., for non-posiuve-
definite systems of equations, see Appendix A), only Lwo
FORTRAN statements, labeled cgauss in Fig. 4, change.

The multiplier constants, xmult, and the column height
information16:20 are utilized in the DO 2 loop in Fig. 4
10 avoid operations with zeros outside the column height (or
skyline). The parameter, k, of the DO 2 loop is illustrated
in Fig. 3. For i=6 (in DO 1 of Fig. 4), the index k (in DO
2) has the values from 2 to 5 as shown in Fig. 3.

Although (K] and [U] are two-dimensional arrays in Fig. 4,
in the actual Choleski factorization code, both are stored in a
one-dimensional array (as in Table 3 of 16). The
modifications required for the basic, sequential Choleski code
to achieve optimal vector and parallel performance (i.e.,
minimal solution time) are given next.

Vectorize Choleski Code with Loop Unrolling

For a single processor with vectlor capability, the loop-
unrolling technique (suitable for SAXPY operations) can be
exploited to significantly improve performance. The
SAXPY operation is one of the most efficient computations
on vector compulers since vector operations are performed in
parallel on separate add and multiply functional units.

In Fig. 3, for example, once the first four rows of the
factored matrix, (U], have been completely updated, row 5
can be updated according to the numerator of Eq. S:

usj=Kksj-Uj5» Uyj
cUgg = 112j
sU3g « U3j 6
T U4s w4

4
In Eq. 6, ujq. upg. u3g and uyq are multiplier constants.

ThUS. U]S (OI' Uzs. U35, U45), ul_] (OI' Uzj. u3j. U4J) and ij

play the role of the terms a, x and ¥, respectively, in

SAXPY operations. The SAXPY operations in Eq. 6 are

also loop unrolled 1o level 4 since operagsons on four rows

are stacked together into one FORTRAN arithmetic

statement. This loop unrolling is possible since "partial”

updated values of row 5 can be computed when any of the

first four rows are complete.

In a previous paper using the column-orieated Choleski
method 16, once the first four columns of the factored
matrix, (U], were completely updated, all erms of column 5
were updated. For example, uy5 was computed by Eq. 5 as:

Uy = kps - (ujp « uy5)
5 u22 (7)

The term uyg in Eq. 7 was computed directly as the "final”

updated value, and could not be expressed in terms of
"partial” updates as is the case in Eq. 6. Therefore, the loop
unrolling technique could not be used in this case. Instead, a

vector unrolling strategym was used to smprove the vector
performance in Eq. 5.

However, in the present paper. the sequential Choleski code
in Fig. 4 can be modified to include loop-unrolling, say o
level 4 as is shown in Fig. 5.

DO 1 i =row#l, row#n
DO 2 k = top row# of ith column, i-1, 4
DO 3 < =1, k + row length of row k
c Eq. 6 (numerator of Eq. 5) code follows
UGij) = K(iy) - Uk.i) * Ulky)
- Uk+1,0) * Uk+1,)
- Uk+2,i) * U(k+2y)
- Uk+3,i) * Uk+3,)
3 Continue

2 Continue
c repeat loop 2 to update ith row by extra k values
d for DO 2k =1, 10, 4, extra k values are 9,10
UGi,1) = SQRT{U(,IY)
xinv = 1/U(1,1)

DO 4 j = i+1, i + row length of row i
UG,j) = U@y) * xinv

4 Continue

1 Continue

Fig. § Vectorized Choleski factorization code
(with level 4 loop unrolling).

Using the loop-unrolling technique, the total number of load
and store instructions and operations between the main
memory and the vector registers is reduced significantly for
nested DO-loops. The modified outer loop (DO 2 in Fig.
5), has an increment equal to the level of unrolling, while
the innermost loop (DO 3 in Fig. 5) contains more
arithmetic computations in a single FORTRAN statement
than the basic code. For vector supercomputers, such as

ORIGINAL FAGE IS
OF PCOR QUALTY

Cray, SAXPY operations are known (o be faster than dot-
product operations used in the skyline method. The use of a
variable-band is preferred to the skyline storage scheme since
it permits the SAXPY operations of Eq. 6.

In addition to vector capability, modem high-performance
computers also have muluple processors which can operate
in parallel. Considerably more work is required by engineers
to achieve parallel performance gains than to achieve vector
performance gains, since code must be restructured for
processor synchronization and load balancing. The parallel-
vector Choleski method was coded (in the Force parallel
FORTRAN language) as the computer program pvsolve.
Pvsolve will be described after a brief synopsis of Force.

Parallel FORTRAN Language, Force

Force is a preprocessor which produces executable parallel
code from a combination of FORTRAN and a set of simple,
yet portable, parallel extensions tailored to run efficiently on
parallel compulers”. The parallel extensions used in
pvsolve are Prescheduled DO, Shared and Private
variables, Produce and Copy. Prescheduled DO causes
all processors to execute the same DO-loop statements in
parallel simultaneously with each processor using a different
DO-loop index. Variables can be either Shared between all
processors or Private (each processor has its own value for
the same variable name). Care should be taken to avoid
large Private arrays, as they are stored in different memory
locations for each processor. Therefore, Shared arrays are
preferred to Private arrays. Copy and Produce are used to
synchronize tasks. Copy X into Y stores X in Y only if X
is "full” (i.e., a signal to all processors to resume their
computations}, otherwise the processor waits. Produce X
= K assigns K to X and marks X as "full”. If X is "full",
Produce waits until X is "empty” (i.e., a signal for
processors to wait) before assigning K to X. Force permits
algonithms to be independent of both the computer and the
number of processors, as the number of processors is not
specified until run time.
Parallel-Vector Choleski Factorization

In Choleski-based methods, a symmetric, positive definite
stiffness matrix, [K], can be decomposed as shown in Eq. 1.

For example, ug7 can be computed from Eq. 5 as:

Kcy-Uj gy -UycUng-Uqclqy-Us<ll
715717 TTRS5T27° 357377745747

The calculations in Eq. 8 for the term usy (of row 5) only

involve columns 5 and 7. Furthermore, the "final value” of
ugy cannot be computed until the final, updated values of

the first four rows have been completed. Assuming that
only the first two rows of the factored matrix, [U], have
been completed, one still can compute the second partially-
updated value of ug as designated by superscript (2):

@) = kg7 - uy5upg - upguyg ®

457
If row 3 has also been completely updated, then the third
partially-updated value of ug7 cam be calculated as:

U573 = ug7(D) - ugs wy, (10)

This obscrvation suggests an efficient way o perform
Choleski factorization in parallel on NP processors. For
example, each row of the coeffacient stiffness matrix, [K], is
assigned (o a separale processor.

From Equation 8, assuming NP = 4, it is seen that row S
cannot be completely updated until row 4 has been
completely updated. In general, in order to update the ith
row, the previous (i-1) rows must already have been updated.
For the above reasons, any NP consecutive rows of the
coefficient stiffness matrix, [K], will be processed by NP
scparale processors. As a consequence, while row 5 is being
processed by a particular processor, say processor 1, then the
first (5-NP) rows have already been completely updated.
Thus, if the ith row is being processed by the pLh processor,
there is no need to check every row (from row 1 o row i-1)
o make sure they have been completed. It is safe to assume
that the first (i-NP) rows have already been completed as
shown in the triangular cross-haiched region of Fig. 6.

Row [-NP

Row |

Completsly Updated

Il Not completeiy Updated

Fig. 6 Information required to update row i.

Synchronization checks are required only for the rows
between (i-NP+1) and (i-1) as shown in the rectangular solid
region of Fig. 6. Since the first (i-NP) rows have already
been completely factored, the ith row can be "partially”
processed by the pLh processor as shown in Equations 9-10.

The vectorized Choleski code in Fig. 5 has been modified for
parallel processing. The resulting skeleton factorization part
of the full pvsolve code is shown in Fig. 7 with parallel
(Force) statements in boldface type.

Shared K{21090356)
Private ij.ktemp.xinv

c (X) vector used to indicate when row is finished
[U] overwrites (K] in actual code w reduce storage

c calculate U(1,1) in Eq. 3 on one processor
UQ,1) = SQRT(K(1,1))

o divide row#1 by U(1,1) as in Eq. 3

c declare row#! finished
Produce X(1) = U(1,1)

c start all available processors
Presched DO 1 i = row#2, row#n

c lock processor if row# (i-NP) is not finished

c release lock when row is finished

[F(i-NP.GT. 0) then
Copy X(i-NP) into temp
End if
DO 2 k = top row# of the ith column, i-NP, 4
c skip DO 3 if all multipliers are zero: zero checking
DO3j=1k+ rowlength of row k
UGij) = K(ig) - Utk.i) * Uky)
- Uk+1.,0) * Uk+1)
- Uk+2,0) * Uk+2)
-Uk+3.0) * Uk+3)
3 continue
2 continue
c lock the processor if row# (i-1) not finished
c release the lock when row#(i-1) is finished
Copy X(i-1) into temp
DO 4 k=max(top row# of ith cotumn, i-NP+1), i1
DO S j = i, k + rowlength of row k
UGij) = UGY) - UGk, * Uky)
S continue
4 continue
U(i.i) = SQRT(U(i4))
xinv = 1/U(i,i)
DO 6 j = i+, i + rowlength of row i
U(g) = UGiy) * xinv
6 continue
c broadcast o all processors that row i is finished
Produce X(i) = U(i1)
1 End Presched DO

Fig. 7 Parallel-vector Choleski skeleton code
(with level 4 loop unrolling).

Solution of Triangular Systems

The forward/backward solution can be made parallel in the
outermost loop by using synchronization statements, and
can result in excellent computation speed-up for an
increasing number of processors on computers where
synchronization time is fast compared 10 computation time.
However, on Cray computers, the computations for the
forward/backward solution time are so fast that for better
performance in pvsolve, they are done on one processor
with long vectors rather than introducing synchronization
overhead on multiple processors. A further time reduction
for one processor is obtained by using loop unrolling in the

forward elimination and vector unrolling16 (another form of
loop unrolling) in the backward substitution.

6

4. Evaluation of Method for Structural Analyses

To test the effectiveness of pvsolve, described in Section
3, two large-scale structural analyses have been performed on
the Cray Y-MP supercomputer at NASA Ames Research
Center. These analyses involved calculating the static
displacements resulting from initial loadings for finite
elcment models of a high speed research aircraft and the
space shuttle solid rocket booster (SRB). The aircraft and
SRB models were selected as they were large, available
finitc-element models of interest to NASA. The Cray Y-
MP was selected as it 1s a high-performance supercomputer
with parallel-vector capability. To verify the accuracy of
the displacements as calculated from the equilibrium
equation (i.e. [K](x} = (f}), the residual vector,

(R} = K] {x] - {f} an

is calculated, and the absolute error norm,

e.= VR)T (R (12)

a

and strain energy error nom,
es= ()T K (x) - ()T () (13)

are evaluated. If no computer roundoff error occurs, all
components in the residual vector, {R] are zero. However,
performing billions of operations during equation solution
introduces roundoff which, for accurate solutions, results in
small values for {R}. e, and e in Egs. 11-13.

The solution times using pvsolve for the SRB application
were also obtained on Cray 2 supercomputers at NASA
Ames and NASA Langley and compared with solution times

for the skyline algorithm in a previous paper16.

In the following applications, code is inserted in pvsolve
10 calculate the elapsed time and number of operations taken
by each processor for equation solution. The Cray uming
and performance utilities (timef, hpm, ja and second) are
used to measure the time, operations and speed of the
equation solution on each processor. For each problem, the
number of Million FLoating point OPerations is divided by
the solution time, in Seconds, to determine the overall
performance rate of the solver in MFLOPS. The timings
obtained are conservative, since they were made with other
users on the systems. In every case, times would be less
and MFLOP rates more if pvsolve were run in a dedicated
compuler environment.

High Speed Research Aircraft

To evaluate the performance of the parallel-vector Choleski
solver, a structural static analysis has been performed on a
16,146 degree-of-frcedom finite-element model of a high-

speed aircraft concept“. shown in the upper right of Fig. 8.

10
*MFLOPS
8}
. 6]
Time,
sec 41 time saved by
zero checking
822
2t 1284
0
1 2 4 8

Number of Cray Y-MP Processors

Fig. 8 Effect of more processors on analysis
time (High-Speed Research Aircraft).

Since the structure is symmetric, a wing-fuselage half model
is used to investigate the overall deflection distribution of
the aircraft. The finite element mode!l of the aircraft is
generated using the CSM Testbed!3 where the stiffness
matrix and load vector are in the form of processor ITER
(with reset sipr=-2), described further in Appendix B. The
half model contains 2851 nodes, 4329 4-node quadrilateral
shell elements, 5189 2-node beam elements and 114 3-node
triangular elements. The stiffness matrix for this model has
a maximum semi-bandwidth of 600 and an average
bandwidth of 321. The half-model is constrained along the
plane of the fuselage centerline and subjected to upward loads
at the wingtip and ‘the resulting wing and fuselage
deflections are calculated.

The numerical accuracy of the static displacements calculated
is indicated by the small absolute and strain energy error
norms of 0.000009 and 0.000005, respectively, computed
from Eqs. 12-13. These residuals are identical no matter
how many processors are used. The small values of the
residuals indicates that the solution satisfies the original
force-displacement equation. The residuals are independant
of the number of processors indicating no error is introduced
by synchronizing the calculations on multiple processors.

The time taken for a typical finite element code to generale
the mesh, form and factor the stiffness matrix is 134 seconds
on a Cray Y-MP (802 seconds on a Convex 220) of which
the matrix factorization is 51 seconds. Using pvsolve, the
factorization for this aircraft application requires 2 billion
operations which reduces to 1.4 billion when operations
with zeros are eliminated. Although CPU time is less for
one processor, elapsed time is reported as it is the only
meaningful measure of parallel performance. Factoring (K]
with no zero checking takes 8.68 and 1.54 elapsed seconds
(at a rate of 228 and 1284 MFLOPS) on one and eight Cray
Y-MP processors, respectively, as shown in Table 1.

-
i

Table 1 Matrix decompuosition time (MFLOPS) for
aircraft on Cray Y-MP:
16,146 equations, bandwidth=600 max, 321 average
5,579,839 matrix size, 499,505 nonzeros

Processors Sec (MFLOPS) Sec (MFLOPS)
with zerochecking
1 8.68 (228) 6.81 (203)
2 4.50 (441) 3.46 (399)
4 2.41 (822) 1.89 (730)
8 1.54 (1284) 1.29 (1071)

Eliminating operations with zeros within the variable
bandwidth (zero checking, see Fig. 7) further reduces the
solution time to 6.81 and 1.29 seconds, respectively, on
one and eight processors. However, the reduced time with
zero checking is accompanied by a reduction in computation
rate (MFLOPS), since the added IF statements also reduce
the number of operations. The reduction in computation
time (nearly proportional to the number of processors) and
the portion of time saved by zero-checking are shown in
Fig. 8. The number above the bars (in MFLOPS) in Fig. 8
show the increased computation rate as the number of

Processors increases.

Space Shuttie Solid Rocket Booster (SRB)

In addition to the high-speed aircraft, the static displacements
of a two-dimensional shell model of the space shuttle SRB.
shown in the upper right of Fig. 9, have been calculated.

50
40! 228
Time, 30} ‘MFLOPS
sec .
20t ~S——(ime saved by
zero checking
872
10 1517
0
1 2 4 8

Number of Cray Y-MP Processors

Fig. 9 Effect of more processors on analysis
time (Space Shuttle SRB).

This SRB model is used to investigate the overall deflection
distribution for the SRB when subjected to mechanical loads
corresponding to selected times during the launch
sequcncczz. The model contains 9205 nodes, 9156 4-node
quadrilateral shell elements, 1273 2-node beam elements and
90 3-node triangular elements, with a total of 54,870 degrees

.

of freedom. The stiffness matrix for this application has a
maximum semi-bandwidth of 900 and an average bandwidth
of 383. A detailed description and analysis of this problem
is given in references 22 and 23.

The calculated absolute and strain encrgy residuals for the
static displacements are 0.00014 and 0.0017, respectively,
from Egs. 12-13. This accuracy indicates that roundoff error
in the displacement calculations is insignificant despitc the
9.2 billion floating point operations performed.

The time for a typical finite clement code to generate the
mesh, form and factor the stiffness matrix is 391 seconds on
the Cray Y-MP (15 hours on a VAX 11/785) of which the
matrix factorization is 233 seconds (51,185 seconds on
VAX). Using pvsolve, the factorization for this SRB
problem, requires 40.26 and 6.04 seconds on one and eight
Cray Y-MP processors, respectively, as shown in Table 2.
Eliminating more than one billion operations on zeros
further reduces the solution time to 5.79 seconds on eight
processors but reduces the computation rate 10 1444
MFLOPS. The CPU times are approximately 10 percent
less than the elapsed times quoted on one processor.

Table 2 Matrix decompasition time (MFLOPS)
(shuttle SRB on Cray Y-MP)
54,870 equations,bandwidth=300 max, 383 average
21,090,396 mauix size, 1,310,973 nonzeros

Processors Sec. (MFLOPS) Sec. (MFLOPS)
with zero-checking

1 40.26 (228) 4097 (224)

2 20.27 (452) 19.32 (425)

4 10.50 (872) 10.00 (821)

8 6.04 (1517) 5.79 (1444)

A reduction in matrix decomposition time by a factor of
7.08 on eight processors compared to one processor (for zero
checking) is shown in Fig. 9. The corresponding
computation rate for this matrix factorization, using eight
processors on the Cray Y-MP is 1,517 MFLOPS. The
previous fastest time to solve this problem on the Cray Y-
MP using a sparse solver was 23 seconds on one processor
and 9 seconds on eight processors for a speedup factor of
2572,

For structural analysis problems with a larger average
column height, and bandwidth than the aircraft or SRB
discussed, one can expect pvsolve to perform computations
at even higher MFLOPS rates since the majority of the
vector operations are performed on long vectors. For
example, a rate of 1784 MFLOPS has becen achieved by
pvsolve for a structural matrix with an average bandwidth

of 699 on the eight-processor Cray Y-MP25'26.

The decomposition time for the Shuttle SRB matrix using

pvsolve, is compared to the skyline algorilhm16 in Fig.
10 for 1, 2 and 4 Cray 2 processors.

150

Skyline

7z Ames C
100 b B ray 2
pvsolve

Time, Ames Cray 2

sec
50

0

1 2
Number of Cray 2 Processors

Fig. 10 SRB decomposition time comparison
(pvsolve ys. skyline method16),

A reduction in decomposition time by a factor of 2 is shown
for pvsolve in the figure for the Cray 2 at NASA Ames.
An additional reduction in decomposition time of
approximately 50 percent is shown for pvsolve on the
newer Cray 2S at NASA Langley with faster memory access
using static RAM compared to dynamic RAM on the Cray 2
at NASA Ames. The decomposition time for pvsolve
using eight processors on the Cray Y-MP (six seconds in
Fig. 9) is a reduction by factors of 23 and 6 when compared
to the skyline solution on 1 and 4 Cray 2 processors,
respectively, shown in Fig. 10.

The above results have been obtained using loop unrolling
to level 9. On the Cray Y-MP supercomputer, the
performance continues to increase until loop unrolling level
9, after which further performance gains are not significant
compared to the complex coding required. The pvsolve
code performed best with an odd number for loop unrolling,
because both data paths to memory are used simultaneously
at all times. The vector being modified plus the 9 unrolling
vectors make ten total vectors, an even number, which keeps
both data paths busy.

§. Concluding Remarks

A parallel-vector Choleski method for the solution of large-
scale structural analysis problems has been developed and
tested on Cray supercomputers. The method exploits both
the parallel and vector capabilities of modern high-
performance computers. To minimize computation time,
the method performs parallel computation at the outermost
DO-loop of the matrix factorization, the most time-
consuming part of the equation solution. In addition, the
most intensive computations of the factorization, the
innermost DO-loop has been vectorized using a SAXPY-
based scheme. This scheme allows the use of the loop-
unrolling technique which minimizes computation time.
The forward and backward solution phases have been found

to be more effecuve 1o perform sequentially with loop-
unrolling and vector-unrolling, respectively.

The parallel-vector Choleski method has been used to
calculate the static displacements for two large-scale
structural analysis problems; a high-speed aircraft and the
space shuttle solid rocket booster. For both structural
analyses, the static displacements are calculated with a high
degree of accuracy as indicated by the small values of the
absolute and strain energy error norms. The total equation
solution time is small for one processor and is further
reduced in proportion to the number of processors. The
option to avoid operations with internal zeros in the matrix
further reduces both the number of operations and the
computation time for both applications.

Factoring the stiffness matrix for the space shuttle solid
rocket booster, which formerly required hours on most
computers and minutes on supercomputers by other
methods, has been reduced to scconds using the parallel-
vector variable-band Choleski method. The speed of
pvsolve should give engineers and designers the
opportunity to include more design variables and constraints
during structural optimization and to use more refined finite-
element meshes to obtain an improved understanding of the
complex behavior of aerospace structurcs leading to belter,
safer designs. Since the algorithm is independent of the
number of processors, it is not only attractive for current
supercomputers, but also for the next generation of shared-
memory supercomputers, where the number of processors is
cxpected to increase significantly.

6. Appendix A

The row-oriented, sequential versions of both the Choleski
and Gauss methods are presented together 1o illustrate how
their basic operations are closely related and readily
identified. To simplify the discussion, the following system
of equations is used throughout this section:

(K] {x) = {f} (14)
2-10
where [KI=|_1 2 _ (15)
0-11
1
and {f}:{o} (16)
0
The solution of equations 14-16 is:
an

<x}={}}
1

9

The basic idea in both the Choleski and Gauss elimination
methods is to reduce the given coefficient matrix, {K], to an
upper triangular matrix, (U]. This process can be
accomplished with appropriate row operations. The
unknown vector, (x}, can be solved by the familiar forward
and backward substitution.

Choleski Method

The stiffness matrix (K] of equation 15 can be converted into
a Choleski upper-triangular matrix, (U], by appropriate row
operations:

2 -1 0]
Ki]=K]=| 1 2 -
0 -1 1|
-1 g] I oo
e -
=[K2]=| 0 -1 1 =K3]= -1e
(K2] s (K3] Oﬂﬁ
0 -1 1 0 -1 1 .
=L i =L
(Tﬁ 0 {Tﬁ 0
K4 = 3 12 K3]= 3 .2
=[K4| 0 3 g=>[31 0 5k
1 1
. o o 1 ‘_o 0 =
where

Row 1 of [K2] = Row 1 of [K] /NKI(1,1)
Row 2 of (K2] = Row 1 of [K2} /N2 + Row 2 of [K1]

Row 2 of [K3] = Row 2 of [K2] N K2(2.2)
Row 3 of (K4] = Row 2 of [K3] * \/ % + Row 3 of [K3]
Row 3 of (KS] = Row 3 of [K4] NK4(3.3)

The multiplier constants, m;;, used in the forward
substitution (or updating the right-hand side vector of Eq.
14) are the same as terms in the factorized upper-triangular
matrix such that

L 0 o V2
Mp2=up=-JH M3=y3=v.My3=up3=-73

et

Gauss Elimination Method

As in the Choleski Method just described, the stiffness
matrix, (K], of Eq. 15 can be converted into a Gauss upper-
triangular matrix by appropriate row operations.

2.1 0
K1)=[K]=| .1 2 -1
0 -1 1

210 2-10

=[K2] = 032—-1 =[K3] = 0121.1

. 1

0-11 001l

In this version of Gauss elimination, the multipliers

m;j can be obtained from the factored matrix, (U], as:

An altenative version of Gauss elimination where the final
diagonal elements become 1 follows:

2 -1 0|
[K1]=[K]=| .1 2 -1
0 -1 1|
1] .1
1 5 0 1 3 0
=(K2]=| 0 121-1 =(K3]=| 0 1-%—
0 -11 0 -1 1
1 1
1) 0 1 2 0
4] = _2_ = _Z
= [K4] o 1 -3 =[KS] o 1 -4
0 0 % 0 0 1

Since the final diagonal terms become one, in the
computer code, the main diagonal of the factored matnx is
used to store the diagonal terms before scaling.

The

as!

For example, uyj =2 upp =35 and uy3 = %
multiplier m;j is obtained from the factored matnx, (U],

m12=u12‘u”=-%x2=-l
m13=u13'u“=0x2=0
My =y *u =-2x1=-l
23=up3%upp = -3x5

Similarities of Choleski and Gauss Method

1) The Choleski and Gauss solution procedures are quite
similar since both methods can be expressed in terms of
row operations which differ only by the scale-factors as
explained above.

2) For both methods, the multipliers, mij' used in the

forward substitution (to update the right-hand-side vector
of Eq. 14) can always be recovered conveniently from the
factored, upper triangular matrix, (U]

3) Both methods can be adapted to solve unsymmetric
systems of linear equations. The basic procedure is
essentially the same as that outlined above except that
the computer storage increases since the lower triangle
matrix of the factored matrix is used to store the
multipliers, mj;. In some applications, partial pivoting
may be useful.

4) Since the multipliers of the Choleski method are identical
w its factored, upper triangular matrix, (U], the Choleski
method is slightly more efficient than the Gauss method
However, the Gauss method can also be used to solve
non-positive-definite systems of equations.

7. Appendix B

The input data and arguments required to call the equation
solver, pvsolve, together with a simple 21-equation
example are given in this Appendix. The user should have a
limited knowledge of parallel computing and the parallel

FORTRAN language Force”. Pvsolve contdins a
Force subroutine, PVS, which may be called by general
purpose codes. The information required by PVS to solve
systems of simultaneous equations (i.e., [K}{u} = {f})) is
transferred via arguments in the call statement:

Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,0pf)
where:

a = a real vector, dimensioned nterms, containing the
coeflficients of the stiffness matrix, [K].

b = a real vector, dimensioned neq, containing the load
vector, (f}. Upon return from subroutine PVS, b
contains the displacement solution, {u}.

maxa = an intcger vector, dimensioned neq, containing the
locaton of the diagonal terms of [K] in vector {a},
equal to the sum of the number coefficients.

irowl = an integer vector, dimensioned neq, containing the
row lengths (i.e., half-bandwidth of each row
excluding the diagonal term) of [K].

icolh = an integer vector, dimensioned neq, containing the
column heights (excluding the diagonal term) of
each column of the stiffness matrix, [K].

neq = number of equations to solve (= degrees of freedom).
nterms = the dimension of the vector, {a}, [= maxa(neg)).

iif = 1 factor system of equations without internal zero check
= 2 factor system of equations with intemal zero check
= 4 perform forward/backward substitution
= 5 perform forward/backward substitution and error check

opf, ops = an integer vector, dimensioned to the number
of processors (8 for Cray Y-MP), containing the
number of operations performed by each processor
during factor and solve, respectively.

For example, the values of these input variables to solve a
system of 21 equations, whose right hand side is the vector
of real numbers from 1. to 21., and [K] is the symmetric,
positive-definite matrix in Fig. B1 are given in Table Bl.

0. 0. 0. 0. 6 @ 0. 0
5 8 7 8 9/a o 0 0 0 g
1y Q0 0] o 6. 0. 0.
t4 15 1610 O Jwjlo 0 o0
20 21 2[0 240 0. 0.
25 2810 J26j0 0. o
29 3 |6 o o
X2 njo o o
Row @ s————= 24 35 3¢
38 0 4 4142 430 0 0 0 O
44 45 48 0 0§ o O e 0 O
47 48 49 0] 0. 0 0. O o
50 St 52 53|06 o o0 o
54 0 5 S7]0 o o
58 0 590 0 0O
60 6t 82 &3 &
65 65 0 6
Row 18— ————— e 0
740.
nr

7

S

Fig. B1 Example [K] matrix with 21 equations.

The line in Fig. B1 represents the skyline defined by the
column heights which extend up to the last nonzero in each
column. The "extra zeros” outside the skyline (in boldface
in Fig. B1) are required to achicve level 9 loop unrolling.
The DO 2 loop in Fig. 5 illustrates this for level 4 loop
unrolling. The vectors (a}, {b}, {maxa}, {icolh), and
{irowl} which are read by pvsolve are given in Table B1:

Table Bl Pvsolve input to solve [K|{x}={b}

(example with 21 equations)

ali) b} maxafi)

-

icolh(i) irowl(i)
1 1. 1. 1 0 11
2 2 13 i 10
3 0 3 24 1 9
4 4 4 34 3 8
S 0 S. 43 3 7
6 0 6. S1 4 6
7 0 7 58 2 5
8 0 8 64 1 4
9 0 9. 69 5 3
10 0 10. 73 1 10
11 0 11. 84 2 9
12 0 12. 94 3 8
13 S. 13. 103 3 7
14 6 14. 111 4 6
15) 15. 118) S
16 .8 16. 124 3 4
17 9 17. 129 3 3
18 0 18. 133 2 2
19 0 19. 136 3 2
20 0 20. 139 4 1
21 0 21. 141 1 0
22 0
23 0
24 10.
25 11
26-33 0
34 14
35 15
36 16
37-38° 0
39 19
135 0
136 70.
137 A
138 0
139 72.
140 3
141 74.

where neq = 21 and nterms = 141, This input data is rcad at
the beginning of the pvsolve program from the file
'‘COEFS.COLM' by subroutine CSMIN (see listing in
Appendix C). The Force subroutine, PVS is then called
twice; first to factor the matrix (iif = 2), and second to
perform the forward/backward solution for displacements
with error checking (iif = 5). A record is kept of number of
floating point operations performed by each processor 1o
factor and solve the matrix (totf, tots) as well as the elapsed
(et0-et5) and task CPU time (10-t5) on each processor at six
key stages in the solution. Subroutine NORM reads the
original matrix and load vector from the file
‘COEFS.COLM' and evaluates the residual (Eq. 11) and the
error norms (Egs. 12-13).

8. Appendix C

A listing of the parallel-vector solution algorithm,
pvsolve, coded in the parallel FORTRAN language,

Fnrce”, follows in this Appendix. The code extends the
skeleton code in Fig. 7 considerably by using loops unrollcd
to level 9 (instead of 4), one-dimensional vectors with
pointers (instead of arrays) and by including the code for
input/output, data handling, initialization, timing and
counting operations. Following the pvsolve code is the
command file used to obtain the static displacements for the
aircraft and SRB structures using the Solid State Disk and
1.2.4 and 8 Cray Y-MP processors. The pvsolve code is
all FORTRAN except for the cdir$ ivdep vector directive,
and the Force parallel directives in boldface type. The
dimension of the variables given on line 2 is for the static
analysis of the 16,146 equation research aircraft and should
be replaced by the dimensions given in line 3 to obtain the
space shuttle SRB displacement solution All variables are
Private unless they are declared as Shared.

Force PVSOLVE of np ident me
Shared real 1(5208900).b(16150).3[(499600).opf(8)
cstb Shared real a(21090500),b(54890),a1(1350761)

Shared real 10(8).11(8).12(8),l3(8).(4(8).15(8).ops(8)
Shared real elO(S).ell(8),el2(8),el3(8),ct4(8).et5(8)
Shared integer maxa(16150),irow(l6150).irowl(l6150)
Shared integer icoln(499600),icolh(16150),nc.neq
End declarations

et0(me)=timef()/1000.

t0(me)=second()/np

if (me.eq.1) then call CSMIN(a,b,maxa,irowl,icolth,neq,

+ nlenns.irow.icoln.nc.maxbw.8.locrow.iavebw)
write(*,*)* PYSOLVE - pvsolve - PVSOLVE Mar. 1990’
write(*,*)* Parallel-Vector equation SOLVEr by Olaf
write(*,*)"* Storaasli, Tarun Agarwal and Duc Nguyen’
write(*,*)'* ‘.np,’ proc. solve ‘neq,’ equations, nc= ‘.nc

write(*,*)'* bandwidth: max= ‘. maxbw,’, avg.= 'iavcbw
write(*,*)* [k] matrix size, nterms= ‘.nterms,’ words'’
endif

etl(me)=timef()/1000.
t1(me)=second()/np

Barrler

End barrler
et2(me)=timef()/1000.
12(me)=second()/np

call PVS to factor (k] with internal zero check Gif = 2).oeeee

=2

Forcecall PVS(a,b.mlxa,irowl.icolh.neq,merms.iif.opf(mc))

et3(me)=timef()/1000.
3(me)=second()/np

call PVS o backsolve for {u} (iif = 4, 5 error check eqs. 11-13)

iif =35

Forcecall PVS(a.b.maxa.irowl.ico]h,neq.nlerms.iif.ops(mc))

etd(me)=timef()/1000.
14(me)=second()/np
Barrier
nat=499600
umax = abs(b(1))
do 1 i=l,neq
1 umax = amaxl{umax,abs(b(i)))
write(*,*)* Maximum displacement = ‘,umax
if(iif.eq.5) call NORM(irowl.icoln,b,neq,nc)
C.....reorder displacements and write to CSM Testbed.........
call TOCSM(b,irowl,icoln,at,aticoln.8.nat)

12

tmax1=0
tmax2=0
tmax3=0
totf=0
tots=0
write(*.*)** clapsed & cpu task lime (sec) *****
write(*,*)'proc. force input Barrier factor /b
do 2 i=1.np
write(*,3) wall " 1.et0(i),et1(i),et2(i).et3(i).etd (i)
write(*.3)'tcpu i,10(1),t1(1),12¢1),13(i),14(1)
tmax l=max(tmax1,et3(i)-et2(i))
tmax2=max(tmax2,etd(i)-et3(i))
tmax3=max(tmax3,etd(i)-et2(i))
totf=totf+opf(1)/1000000.
2 tots=tots+ops(i)/1000000.
3 format(a.i2,5(9.5)
write(*,*) tmaxl,’ secs decomp, ',lotf,
+ ' million ops. at "totf/tmax1,’ mflops *
write(*,*) tmax2,’ secs solve , 'tots,
+ ' million ops. at tots/tmax2,’ mflops’
write(*,*) tmax3,' secs TOTAL , ‘,totfHots,
+ ' million ops. at ',(tots+totf)/tmax3," mflops’
End barrier
etS(me)=timef()/1000.
t5(me)=second()/np
write(*,*)proc. ',me,’ tot wall=",etS(me), tcpu=",t5(me)
call exit(0)

Join

end

Forcesub PVS(a,b,maxa,irowlicolh,neq,nterms,iif,ops)
+ of np ident me

dimension a(‘).b(‘).icolh(‘).mua(‘).irowl(‘)
Async real x(16150)
End declarations
if(iif.le.2) then
Presched do 91 =1, neq
Vold x(i)
9 End presched do
ops =0
Barrier
a(1) = sqri(a(l))
xinv= 1.0/a(1)
cdir$ lvdep
do 20 k = 1, irowl(1)
20 a(k+1) = xinv*a(k+1)
ops = ops + irowl(1)+2
Produce x(1)=a(l)
End barrier
c....factor stiffness matrix in parallel from row 2 to neq
Presched do 100 i = 2, neq
iml = maxa(i)
icl = icolh(i)
C......gel indices to segment column i in 3 parts..............
ibot =i - 9*((i-1)/9)
icol = icl - ibot + 1

icolp= icol/9
itop = icol - 9*icolp
jrow =i - icl

jml = maxa(jrow) + icl

jjrow=irowl(jrow)

if (itop. ge. 1) then

icopy = jrow + itop - 1

if (isfull(x(icopy))) go to 331

Copy x(icopy) into temp

endif
PO P PP P PR PO PP PSP S TSP PR PP RELLD
31 go o (101,102,103,104,105,106,107,108), itop

cdir$
101

111
102
cdir$

112

103

cdir$

113

104

cdir$

114

105

cdir$

115

106

cdir$

116

+

107

cdir$

117

go to 150
lvdep
do 111 k = 1, jjrow-icl+1
kml = k-1
a{iml+kml) = a(iml+kml)-agml)*a(jmi+kml)
go to 150
jm2 = jml + jjrow
ivdep
do 112k = 1, jjrow-icl+1
kmi = k-1
a(iml+kml) = a(iml+km1l)-a(gmi)*a(yml+kml)
-a(jm2)*a(jm2+km1)
go to 150
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
ivdep
do 113 k = 1, jjrow -icl+l

kml =k -1
a(iml+kml) = a(iml+kml) - agmi)*a(jml+kml)
-a(jm2)*a(jm2+km1) -a(jm3)*a(jm3+km1l)
go to 150
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmd = jm3 + jjrow -2
ivdep
do 114 k = 1, jjrow -icl+]
kml =k -1
a(iml+kml) = a(im1+km!)-a(jml)*a(jml+kml)
-a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+kml)
-a(jm4)*a(jm4+kml)
go to 150
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmd = jm3 + jjrow -2
jm5 = jm4 + jjrow -3
ivdep
do {15 k = 1, jjrow -icl+1
kml =k -1
a(iml+kml) = a(iml+km1)-a(jm1)*a(jm1+kml)
-a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+kml)
-a(jm4)*a(jm4+km1)-a(jm5)*a(jmS+km1l)
go to 150
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmd4 = jm3 + jjrow -2
jmS = jm4 + jjrow -3
jmé = jmS + jjrow -4
Ivdep
do 116 k = 1, jjrow -icl+1
kmi=k -}
a(iml+kml) = a(iml+kml)-a(jml)*a(jm1l+kml)
-a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+km1l)
-a(jmd)*a(jm4+km1)-a(jm5)*a(jmS+km1)
-a(jmé6)*a(jm6+km1)
go to 150
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jm4 = jm3 + jjrow -2
jmS = jm4 + jjrow -3
jmé = jm5 + jjrow -4
jm7 = jmé + jjrow -5
ivdep
do 117 k = 1, jjrow -icl+l
kml =k -1
a(iml+kml) = a(iml+kml)-a(jm1)*a(jm1+kml)
-a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+km1)
-a(jmd)*a(jm4+km1)-a(jm5)*a(jmS+km1)

108

cdir$

118

+ 4+ + +

150

1

-a(ymé)*a(ymb+kml)-a(jm7)*agm7 +kml)
go to 150
jm2 = jml + prow
Jjm3 = jm2 + grow -1
jmd = ym3 + grow -2
jmS = jm4 + jwow -3
jm6 = jmS + jyrow -4
jm7 = jm6 + jwow -5
jm8 = jm7 + grow -6
ivdep
do 118 k = 1, jjrow -icl+1
kml =k -1
a(iml+kml) = a(uml+kml)-a(jml)*a(ml+km!)
-a(jm2)*a(jm2+kml)-a(jm3)*a(jm3 +kml)
-a(jm4)*a(jm4+km1)-a(jm5)*a(jmS+km1l)
-a(jmé6)*a(jm6é+km!l)-a(jm7)*a(jm7+kml)
-a(jm8)*a(jm8+kml)
ops = ops + iop*()yrow -icl+2)*2
It=1
idiv = 1
if (icolp.le.ll) then
Il =icolp
idivl=1
else
idivl=icolp-ll+1
endif
jlop = icl
jbot = icl-itop+l
do101=1 1l
jlop = jlop - itop
jbot = jbot - 9*idivl
itop = 9*idivl
idivl = idiv
if (l.eq.ll) then
icopy =1 -1
else
icopy =1 -jbot +ibot-1
endif

if(isfull(x(icopy))) go to 332

Copy x(icopy) into temp
c....unroll to level 9: fast vector saxpy operations

332

cdir$

300

++ + +

do 200 j = jtop, jbot, -9
jil = ij
jjrow = irowl(jj1)
jml = maxa(jjl) +)
jm2 = yml + jjrow
jm3 = jm2 + jjrow -1
jm4 = jm3 + jjrow -2
jmS = jm4 + jjrow -3
jmé = jmS + jjrow 4
jm7 = jm6 + jjrow -5
jm8 = jm7 + jjrow -6
jm9 = jm8 + jjrow -7
if(iif.eq.2) then
if (a(jm9).ne.0.0) then
fvdep
do 300 k = 1, irowl(jj1) -j+1
kml =k -1
a(iml+kml) = a(iml+kml)-a(jml)*a(jm1+kml)
-a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+km1!)
-a(jm4)*a(jmd+km1)-a(jmS)*a(jmS+km1l)
-a(jm6)*a(jm6+km1)-a(jm7)*a(jm7+km1)
-a(ym8)*a(jm8+km1)-a(jm9)*a(jm9+km1)
ops = ops + 18*(irowl(jjl1)-j+1)
else
if(a(jm4).ne.0.0) then
go to 301

else
if((a(jm1).eq.0.0).and.(a(jm2).eq.0.0).and.
+ (a(jm3).eq.0.0)) go to 302
endif
cdir$ ivdep
301 do 310 k = 1, irowl(jj1) -j +1
kml =k -1
310 a(imi+kml) = a(iml+kml)-a(jm1)*a(jml+kml)
+ -a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+km1)
+ -a(jmd4)*a(jm4+kml)
ops = ops + 8*(irowl(jj1)-j+1)
302 if((a(jm5).eq.0.0).and.(a(jm6).eq.0.0).and.
. (a(jm7).eq.0.0).and.(a(jm8).eq.0.0)) go to 200
cdir$ ivdep
do 320 k = 1, irowl(jj1) -j +1

kml =k -1
320 a(im1+km1) = a(iml+km1)-a(jm5)*a(jm5+km1)
+ -a(jm6)*a(jmé+km1)-a(jm7)*a(jm7+kml)
+ -a(jm8)*a(jm8+km])
ops = ops + 8*(irowl(jj1)-j+1)
endif
else
cdir$ flvdep
do 330 k = 1, irowl(jjl) - j +1
kml =k -1
330 a(im1+km1) = a(iml+kml)-a(ml)*a(jml+kml}
+ -a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+kml)
+ -a(jm4)*a(jm4+km1)-a(jmS)*a(jmS+kml)
+ -a(jm6)*a(jmb+km1)-a(jm7)*a(jm7+km1)
+ -a(jm8)*a(jm8+km1)-a(jm9)*a(jm9+kml)
ops = ops + 18*(irowl(jjl1)-j+1)
endif
200 continue
10 continue

ll=i-1
if (isfull(x(1l))) go to 333
Copy x(1l) into temp

TR OR PP OPPPP P
333 go to (201,202,203,204,205,206,207,208) ibot-1
go to 250
201 jjrow = irowli(i-1)
jml = maxa(i-1) +1
cdir$ ivdep
do 211 k= 1, jrow
kml = k-1
211 a(im1+km1) = a(iml+km1l)-a(iml)*a(yml
+kml)
go to 250
202 jjrow = irowl(i-2)
jml = maxa(i-2) +2
jm2 = jml + jjrow
cdir$ ivdep
do 212 k = 1, jjrow -1
kml =k -1
212 a(im1+kml)=a(im1+km1)-a(jm1)*a(jml+km1)
+ -a(jm2)*a(jm2+km1)
go to 250
203 jjrow = irowi(i-3)

jml = maxa(i-3) + 3
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
cdir$ ivdep
do 213 k = 1, jjrow -2
kml =k -1
213 a(iml+kml)=a(iml+km1)-a(jm1)*a(jml+km1)
+ -a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+km1)
go to 250

14

204 Jrow = irowl(i-4)
jml = maxa(i-4) + 4
jm2 = jyml + jjrow
jm3 = jm2 + jrow -1
jm4 = jm3 + jjrow -2

cdir$ livdep

do 214 k = 1,jjrow -3
kml =k -1
214 a(im1+kml) = a(iml+kml)-a(jml1)*a(yml+km1l)
+ -a(jm2)*a(jm2+kml)-a(jm3)*a(jm3+km]l)
+ -a(jmd)*a(jmd+kml)
go to 250

205 Jrow = irowl(i-5)
jml = maxa(i-5) + 5
jm2 = jml + jrow
jym3 = jm2 + jjrow -1
jmd = jm3 + jjrow -2
jmS = jm4 + jjrow -3

cdir$ lvdep

do 215 k = 1, jjrow 4
kml =k -1
215 a(im1+km1) = a(iml+km1l)-a(jml)*a(jmi+kml)
+ -a(jm2)* a(jm2+kml)-a(jm3)*a(jm3+kml)
+ -a(jm4)*a(jm4-+km1)-a(jmS)*a(jmS+km1)
go to 250

206 jjrow = irowl(i-6)
jml = maxa(i-6) +6
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmd = jm3 + jjrow -2
jmS = jm4 + jjrow -3
jmé6 = jm5 + jjrow 4

cdir$ ivdep

do 216 k = 1, jjrow -5
kml =k -1
216 a(iml+kml) = a(im1+kml)-a(jml)*a(jml+kml)
+ ° .a(jm2)*a(jm2+kml)-a(jm3)*a(jm3+km1)
+ -a(jm4)*a(jmd+km1)-a(jmS)*a(jmS+km1)
+ -a(jm6)*a(jm6+km1)
go to 250

207 jjrow = irowl(i-7)
jml = maxa(i-7)+7
jm2 = jml + jjrow
jm3 = jm2 + jrow -1
jmd = jm3 + jjrow -2
jmS = jmd + jjrow -3
jm6 = jmS + jjrow 4
jm7 = jm6 + jjrow -5

cdir$ ivdep

do 217 k = 1, jjrow -6
kml =k -1
217 a(im!+km1)=a(im1+km1)-a(jm1)*a(jm1+kml)
+ -a(jm2)*a(jm2+km1)-a(jm3)*a(jm3+km!)
+ -a(jm4)*a(ym4+km1)-a(jmS5)*a(jm5+kml)
+ -a(jm6)*a(yjmé+km1)-a(jm7)*a(jm7+kml)
go to 250

208 jjrow =irowl(i-8)
jml = maxa(i-8) + 8
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmd = ym3 + jjrow -2
jmS = jméd + jjrow -3
jmé = jmS + jjrow -4
jm7 = jm6 + jjrow -5
jm8 = jm7 + jjrow -6

cdir$ ivdep

do 218 k = 1, jjrow -7

kml =k -1
218 a(iml+km1)=a(im! +km1)- a(yml)*a(yml +kml)
-a(jm2)*a(jm2+km)-ajm3)*am3+km1)
-a(jm4)‘a(jm4+km1)-aUmS)‘aUmS«rkml)
-a(jmé6)*a(jm6+km1)-a(jm7)*a(jm7+kml)
-a(jm8)*a(jm8+kml)
250 ops = ops + 2*(ibot-1)*(jjrow -ibot +2)
a(im1) =sqri(a(iml))
xinv = 1.0/a(iml)
ivdep
do 260 k = 1, irowl(i)
260 a(im1+k) = xinv *a(iml+k)
ops = ops + irowl(i) +2
Produce x(i) = a(iml)
100 End presched do
else
c....forward reduction- unroll to level 3 for fast vector speed:
C.....each 3 rows of [k] must end in the same column number..
Barrier
ops =0
ibot = neq -3* (neq/3)
do 510 i = 1,neq-ibot.3
im] = maxa(i)
im2 = maxa(i+l)
im3 = maxa(i+2)
xmultl = b(i)/a(iml)
xmult2 = (b(i+1) - xmultl*a(im1+1))/a(im2)
xmul3 = (b(i+2) - xmultl*a(im1+2)

+ 4+ 4+ 4+

cdir$

+ - xmult2*a(im2+1))/a(im3)
b(i) = xmultl
b(i+1) = xmult2
Bi+2) = xmul3
cdir$ ivdep
do 520 j = i+3, i+irowl(i)
520 b(j) = b(j) - xmultl*a(iml+)-1)
+ - xmuli2*a(im2+j-i-1)
+ - xmult3*a(im3+j-i-2)
510 ops = ops + 6*(irowl(i)-2>+ 9

if (ibot.eq.1) then
(neq) = b(neq)/a(maxa(neq))
ops = Ops + 1

else
if (ibot.eq.2) then
iml = neq -1

b(iml) = b{iml)/a(maxa(im1))
bineq) = (b{neq) -blim1)*

+ a(maxa(im1)+1))/a(maxa(neq))

ops = ops + 4

endif

endif

Covrarens back substitution with vector unrolling follows...
b(neq) = b(neg)/a(maxa(neq))
ops = ops +1
jml = neq -1
if (ibot .eq. 2) then

iml = neq -1

b(im1)=(b(im1)-
a(maxa(im1)+1)*b(neq))/a(maxa(im1))
ops = ops + 3

jml = neq -2

endif

if (ibot .eq. 0) then
iml = neq -1
Bim1)=(b(im1)-a(maxa(im1)+1)*b(neq))a(maxa(im1))
im2 = neq -2

b(im2) =(b(im2)-a(maxa(im2)+1)*b(im1)
+ -a(maxa(im2)+2)*t(neq))/a(maxa(im2))

1¢

ops = ops + 8
jml = neq -3
endif

do 10101 = jm1.,1,-3
unl = maxa()
im2 = maxa(i-1)
im3 = maxa(i-2)

xmultl = 0.0

xmulz = 0.0

xmuld = 0.0
cdir$ lvdep

do 1020 j=i+1, irowl(i)+i
xmultl = xmultl + a(iml+j-1)*b(j)
xmult2 = xmult2 + a{im2+j-1+1)*b(})
1020 amuld = xmult3 + a(im3+j-i+2)*b(j)
b(i) = (b(i) - xmultl)/a(iml)
b(i-1) = (b(i-1) - a(im2+1)*b(i) - xmult2)/a(im2)
b(i-2) = (b(i-2)-a(im3+2)*b(i)-a(im3+1)*b(i-1)

+ -xmul3)/a(im3)
1010 ops = ops + 6*(irowl(i)) +12
End barrier
endif
retum
end

subroutine NORM(irow.icoln,x,neq.nc)

dimension irow(*).icoln(*),x(*},b(neq),diag(neq),offdia(nc
c.....get error error norm: {a)*{x}=(b}: read file COEFS.COLM
c..... ([xqt iter with reset sipr=-2 in CSM Testbed) where:
¢c.....nc=number of nonzero, off-diagonal terms of {k]
¢.....irow(neq)=no. of nonzeros in each row w/o diagonal
¢.....icoln(nc)=column no. of nonzero terms of {k] by row
c.....diag(neq)=diagonal terms of [k], b(neq)=load vecior
¢.....offdia(nc)=nonzero, offdiagonal terms of {k]
rewind(8)
read(8) neq.neq2.nc,nc2,jdof,jt.ndof
read(8) (irow(i) .i= 1 , neq)
read(8) (icoln(i), i = | , nc)
read(8)(diag(i), 1 =1, neq)
read(8)(offdia(i). 1 = 1, nc)
read(8X b(i), i =1, neq)

icount = 0
doli1=1,neq
1 diag(i) = diag(i) * x(i)

do2i=1,neq-1
nonz = irow(i)
do2)=1,nonz
icount = icount + 1
locate= icoln(icount)
diag(i) = diag(i) + offdia(icount)*x(locate)
2 diag(locate)=diag(locate)+offdia(icount)*x(i)
enorm
fnorm
snorm
do3i=1,neq
diag(i) = diag(i) - b(i)
enorm = enorm + diag(i) * diag(i)
fnorm = fnorm + b(i)*b(i)
3 snorm = snorm + diag(i)*x(i)
write(*,*)'* ABSOLUTE error norm = ',sqrt(enorm)
relerr = sqri(enorm/fnorm)
write(*,*) '* RELATIVE to load = "relerr
write(*,*) '* STRAIN ENERGY error norm = ',snorm
rctum
end
subroutine CSMIN(a,b,maxa,irowl,icolh,neq,nierms,
+ irow,icoln.nc,maxbw,iin,locrow,iavebw)
dimension a(*),b(*),maxa(*),irowl(*).icolh(*),irow(*).ic

nonow
=
o

c....read binary file COEFS.COLM output by iter(sipr=-2)...
open(unit=8.file="COEFS.COLM' form="'unformatted’,
+ access='sequential’.status="o0ld")
read(iin) neq.neq2,nc.nc2,jdof,jt,ndof
read(iin) (irow(i), i = l.neq)
read(iin) (icoln(i), i=1,nc)
c.....initialize column heights........................
loop =9
do 1001 =1, neq
icolh(i) = 0.0
icount = 1
do 1101 = 1, neq-1
do 110 j =1, irow(i)
jeol = icoln(icount)
nowht = jcol - i
if (nowht.gt.icolh(jcol)) icolh(jcol)=nowht
icount = icount+1
c....find the row-lengths.....ccccoooooiiiiine
isegl = loop*neq/loop
jeount = 0
icount = 1
do 1201 =1, isegl, loop
jeount = jeount + trow(i)
if (icoln(jcount).gt.icount) icount=icoln(jcount)
do 130 j = i+1, i+loop-1
jeount =jcount + irow(j)

100

130 if (icoln(jcount).gt.icount) icount=icoln(jcount)
do 140 j = Li+loop-1
140 irowl(j) = icount - j
120 continue
do 150 i = isegl+l,neq
150 irowl(i) = neq - i
c....locate diagonal elements in vector {a}.............
maxa(l) =1
do 160 i =1, neq
160 maxa(i+1) = maxa(i) + irowl(i) +1
icount = |
do 1701 = 1, neq-1
do 170 j = 1, irow(i)
jeol = icoln(icount)
locate = maxa(i) +jcol - i
icoln(icount) = locate
170 icount =icount +1
nterms = maxa(neq+1t) - 1
do 180 i = I, nterms
18C a(i) = 0.0

read(iin) (a(maxa(i)), i=1,neq)
read (iin) (a(icoln(i)),i=1,nc)
read(iin) (b(i), i=1,neq)
c....find maximum and average bandwidths............
maxbw = 0
iavebw = 0
do 190 i = 1, isegl, loop
if (irowl(i) .gt. maxbw) then
maxbw = irowl(i)

locrow =i
endif
190 iavebw = iavebw + loop*irowl(i) - (loop)*(loop-1)/2
do 200 i = isegl+l,neq
200 iavebw = iavebw + irowl(i)

iavebw = iavebw/(neq+1)

maxbw =maxbw + 1

return

end

subroutine TOCSM(x,irowl,icoln,b,u,irtoj,iin,nat)
dimension irowl(*),icoln(*),b(*),u(*),x(*).irtoj(*)
character*40 libnam

o o0 o600

00 i

16

common /consu/jt,jdf,jddf.inex(6),mexin(6).ksym(3).q.qq

convert static displacements calculated by pvsolve
o csm testbed joint reference frame for [k)(u}=(f)
assume each node has 6 degrees-of-freedom (i.e.,
u(14) is the 2nd dof of node #3) and
Jdof = number of joints * number of dof per joint

read '(a).libnam

nu = lmopen('old’,0,libnam,0,1000)

call dal(nu,11,jt,18.-1,1seq,ierr,nwds,ne,lb.ityp,

+ 4hJDF1.4hBTAB,1,8)

...... rcad COEFS.COLM as in subroutine NORM.............

rewind iin

read(iin) n,n,nc,nc,jdof,jt.ndof
if(nat.ge.2*jdof.and.nat.ge.ncoef) then
read (1in) (irowl(i).i=1,n)

read(iin) (icoln(i),i=1,nc)

read(iin) (b(i),i=1,n)

read(itn) (b{(i),i=1,n¢)

read(iin) (b(i).i=1,jdof)

...... COEFS.COLM stores joint-to-row before row-to-joint.
...... only row-to-joint info. needed, so storage reused...

read(iin) (jtorj(i),i=1,2*jdof)
else
write(*,*) ‘error in TOCSM: insufficient memory'
endif
..initialize joint displacement....................
do 4 i=1jdof
u(i)=0.
do 1 i=jdof+1,jdof+n
locate = irtoj(i)
u(locate) = x(i-jdof)
put prescribed displacements in vector {u].....
do 2 i = jdof+n+1,2%jdof
if(irtoj(i).ne.0) then
locate = irtoj(i)
u(locate)= b(i-jdof)
endif.
continue
write displacements for first 3 joint locations
njoint = jdof/6

do 3 i=13
il = (i-1)*6 + 1
i2 = i*6

write(6.5) i,(u(j).j=i1.i2)
format('jt’iS," disp=".6e11.3)

...put displacements in csm testbed library file

‘libnam’ (load set 1, constraint set 1)
iset = 1
ncon = 1
nrhs = 1
nwds = jdof*nrhs
call gmsign(PYSOLVE’)
call dal(nu,0,0,0,1,Iseq.ierr,nwds,jt,jdf,-1,
+ 4hSTAT.4hDISP.iset,ncon)
call rio(nu,1,2,Iseq,1,nrhs,u(1),nwds,-1,jt)
call gmclos(nu,0,9999)
retum
end

The command file to compute static displacements for the
research aircraft and space shuttle SRB on the Cray Y-MP
using 1 to B processors follows. The first statements specifly
the UNIX C-shell is used and the maximum number of
processors (NCPUS) that may be requested is 8. The stiffncss
matrix data (COEFS.COLM) and program (pvsolve) are then
copied to the solid state disk (SWRKDIR). Using the hardware
performance monitor, hpm, to count operations, times and

N

MFLOPS, the displacements for the aircraft and SRB are then
calculated by pvsolve on 84,2 and 1| processors. The
results are appended to the file ‘out’ which, upon completion,
is copied to the home directory:

#!/bin/sh

NCPUS=8

export NCPUS

cd SWRKDIR

date >out

cp /ufra/storaasl/nasp/COEFS.COLM .

cp /u/ra/storaasi/srb/pvsolve .

date >>out

ja

hpm -g0 -d forcerun pvsolve 8 >>out 2>&1
hpm -g0 -d forcerun pvsolve 4 >>out 2>&1
hpm -g0 -d forcerun pvsolve 2 >>out 2>&1
hpm -g0 -d forcerun pvsolve 1 >>out 2>&1
date >>out

cp /scrS/storaasl/stb/COEFS.COLM .

date >>out

hpm -g0 d forcerun pvsolvesrb 8 >>out 2>&1
hpm -g0 -d forcerun pvsolvesrb 4 >>out 2>&1
hpm -g0 -d forcerun pvsolvesrb 2 >>out 2>&1
hpm -g0 -d forcerun pvsolvesrb 1 >>out 2>&1
date >>out

cp out SHOME

Pvsolve is run in the CSM Testbed!8 structural analysis
software to compute the static displacements for the SRB
using the *spawn command in the following runstream using
four Cray Y-MP processors:

testbed

*open 1 srb.101
[xqt iter

reset sipr = -2

stop

*close 1

*spawn pvsolve srb.l01 4
*open | srb.101 /old
[xqt vprt

PRINT STAT DISP
[xqt gsf

[xqt psf

[xqt exit

The ‘iter' reset option bypasses the lengthy solution process
and just formats the data for pvsolve. Pvsolve computes
the static displacements and writes them to the data set
STAT.DISP.1.1 in the CSM Testbed library srb.l01l. The
stresses are then calculated and printed based on the
displacements calculated by pvsolve. The pvsolve code
above is compiled using force producing the executable file,
pvs. The pvsolve in the *spawn command is the following
script that resides in the directory containing the CSM
Testbed executable files:

forcerun pvs $2 <<EOF
51
EOF

17

9. References

1Mackimosh. A. R., "The First Electronic Computer”,
Physics Today, March 1987, pp. 25-32.

2Oncga. J. M., Introduction to Parallel and Vector Solution
of Linear Systems, Plenum Publishing Corporation, New
Jerscy, 1988.

3Utku. S., Salama, M., and Melosh, R., “Concurrent
Factorization of Positive Definite Banded Hermitian
Matrices”, International Journal of Numerical Methods in
Engineering, Vol. 23, 1986, pp. 2137-2152.

4Farhat, C., Wilson, E., and Powell, G., "Solution of
Finite Element Systems on Concurrent Processing
Computers”, Engineering Computing, Vol. 2, 1987, pp.
157-165.

SChen, S., Dongarra, J., and Hsiung, C., "Multiprocessing
Linear Algebra Algorithms on the Cray XMP-2:
Experiences With Small Granularity”, Journal of Paralle!
Distributed Computing, Vol. 1, 1984, pp. 22-31.

6Dongarra, J. J., Gustafson, F. G., and Karp, A,,
"Implementing Linear Algebra Algorithms for Dense
Matrices on a Vector Pipeline Machine", SIAM Review,
Vol. 26, No. 1, January, 1984,

7Ashcraﬂ, C. C,, Grimes, R. G., Lewis, J. G., Peyton, B.
W., and Simon, H. D., "Progress in Sparse Matrix Methods
for Lasge Linear Systems on Vector Supercomputers”. The

International Journal of Supercomputer Applications, Vol.
1, No. 4, Winter 1987, pp. 10-30.

8Poole, E. L., and Overman, A. L., "The Solution of
Linear Systems of Equations with a Structural Analysis
Code on the NAS Cray 2", NASA CR 4159, Dec. 1988.

9Storaasli, O. O., and Bergan, P. G., "Nonlinear
Substructuring Method for Concurrent Processing
Computers”, AIAA Journal, Vol. 25, No. 6, June 1987, pp.
871-876.

10Law, K., "A Parallel Finite Element Solution Method”,
Computers and Structures, Vol. 23, No. 6, 1986, pp. 845-
858.

HFEarhat, C. , and Wilson, E. L., "A Parallel Active
Column Equation Solver”, Computers and Structures, Vol.
28, 1988, pp. 289-304.

125 0raasli, 0. O., Poole, E. L., Ortega, J. M., Cleary, A.,
and Vaughan, C., "Solution of Structural Analysis
Problems on a Parallel Computer”, Proceedings of the
AIAA/ASME/ASCE/AHS 29th Structures, Structural
Dynamics and Materials Conference, Williamsburg, VA,
April 18-20, 1988, pp. 596-605, AIAA Paper No. 88-2287.

135t0raasli, O. O., Bostic, S. W., Patrick, M., Mahajan,
U.. and Ma, S., "Three Parallel Computation Methods for
Structural Vibration Analysis", Proceedings of the ATAA/
ASME/ASCEIAHS 29th Structures, Structural Dynamics
and Materials Conference, Williamsburg, VA, Apr. 18-20,
1988, pp. 1401-1411, ATAA Paper No. 88-2391.

14Nguyen, D. T., Shim, J. S., and Zhang, Y., "The
Component-Mode Method in a Parallel Computer Environ-
ment”, Proceedings of the AIAAJIASMEIASCEIAHS 29th
Structures, Structural Dynamics and Materials Conference,
Williamsburg, VA, April 18-20, 1988, pp. 1705-1710,
AIAA Paper No. 88-2438.

ISNguyen, D. T., and Niu, K. T., "A Parallel Algorithm
for Structural Sensitivity Analysis on the FLEX/32
Multicomputer”, Proceedings of the 6th ASCE Structures
Congress, Orlando, FL, August 17-20, 1987, pp. 98-112.

165oraasli, O. O., Nguyen, D. T., and Agarwal, T. K.,
"The Parallel Solution of Large-Scale Structural Analysis
Problems on Supercomputers”, Proceedings of the
AIAA/ASME/ASCEIAHS 30th Structures, Structural
Dynamics and Materials Conference, Mobile AL, April 3-5,
1989, pp. 859-867. Paper No. 89-1259 (to appear in ATAA
Journal, Sept. 1990)

l7Jorda,n, H. F., Benten, M. S., Arenstorf, N. S., and
Ramann, A. V., "Force User's Manual: A Portable Parallel
FORTRAN", NASA CR 4265, January, 1990.

1851ewart, C. B.(compiler), "The Computational Structurai
Mechanics Testbed User's Manual”, NASA TM-100644,
October 1989.

18

19George, A. and W-H Liu, J., Computer Solution of
Large Sparse Positive Definite Systems. Prentice Hall, Inc,,
Englewood Cliffs, NJ, 1981.

20nathe, K. 1., Finite Element Procedures in Engineering
Analysis, Prentice Hall, Inc., New York, 1982.

21Robins, W. A. et al., "Concept Devclopment of a Mach
3.0 High-Spced Civil Transport”, NASA TM 4058, Sept.
1988.

22Knight, N. F., McCleary, S. L., Macy, S. C., and
Aminpour, M. A., "Large Scale Structural Analysis: The
Structural Analyst, The CSM Testbed, and The NAS
System”, NASA TM-100643, March 1989.

23Knight, N. F., Gillian, R. E., and Nemeth, M. P.,
"Preliminary 2-D Shell Analysis of the Space Shuttle Solid
Rocket Boosters”, NASA TM-100515, 1987.

245imon, H., Vu, P. and Yang, C., "Performance of a
Supernodal General Sparse Solver on the Cray Y-MP: 1.68
GFLOPS with Autotasking”, Scientific and Compuling
Analysis Division Report SCA-TR-117, Boeing Computer
Services, Seattle, WA, March, 1989.

25S1oraasli, O., Nguyen, D., and Agarwal, T., "Force on the
Cray Y-MP", /u/nasinews The Numerical Aerodynamic
Simulation Program Newsletter, NASA Ames Research
Center, Vol. 4, No. 7, July 1989, pp. 1-4.

26Soraasli, Q. O., "New Equation Solver for
Supercomputers”, /u/nas/news The Numerical Aerodynamic
Simulation Program Newsletter, NASA Ames Research
Center, Vol. 5, No. 1, January 1990, pp. 1-3.

NI\S’\ Report Documentation Page

W e Yl e
O e LK

1

!
|
!

Report No \' 2. Government Accession No .3 Recipient’s Catalog No.
]

NASA TM-102614 ;

j
s

4

|
7

Titte and Subtitle 5 Report Date

A Parallel-Vector Algorithm for Rapid Structural April 1990
Analysis on High-Performance Computers

6 Performing Organizaton Code

Author(s) 8. Pertorming Organization Report No.

0laf 0. Storaasli
Duc T. Nguyen

Tarun K. Agarwal 10 Work Unit No

_ Performing Organization Name and Address 505-63-01-10

NASA Langley Research Center 11 Contract or Grant No.
Hampton, VA 23665-5225

13. Type of Report and Period Covered

. Sponsoring Agency Name and Address Techni 1 M d
National Aeronautics and Space Administration €chnica’ Memorandum

Washington, DC 20546-0001 14 Sponsoring Agency Code

. Supplementary Notes

Expanded version of AIAA Paper No. 90-1149 presented at the AIAA/ASME/ASCE/AHS
31st Structures, Structural Dynamics and Materials Conference, Long Beach, CA
April 2-4, 1990. Part of this work was supported by NASA Grant NAG-1-858 with
01d Dominion University (ODU).

16. Abstract

A fast, accurate Choleski method for the solution of symmetric systems of linear
equations is presented. This direct method is based on a variable-band storage
scheme and takes advantage of column heights to reduce the number of operations
in the Choleski factorization. The method employs parallel computation in the
outermost DO-loop and vector computation via the "loop unrolling" technique in
the innermost DO-loop. The method avoids computations with zeros outside the
column heights, and as an option, zeros inside the band. The results for two
large-scale structural analyses performed on supercomputers, demonstrates the
accuracy and speed of the method. The listing of the computer program, PVSOLVE,
and a simple example with input data are contained in Appendices B and C. The
use of PVSOLVE for parallel equation solution in a stand-alone mode as well as
its use in the CSM Testbed structural analysis system is described in

Appendix C.

17. Key Words (Suggested by Author(s}) 18. Distribution Statement
structural analysis FEDD
Tinear equations
simultaneous equations Subject Category 39
19. Secunty Classit (of thus report) 20. Security Classif. (of this page} 21 No. of pages 22. Price
Unclassified Unclassified 19

NASA FORM 1626 OCT 86

APPENDIX B: Parallel FORTRAN Listing of Subroutine Golden Block

Force GOLDB of NP ident ME
Shared REAL ALPHA(30),FVALUE(30)
shared REAL A,EPS,AA,FMIN,DELTA
Shared INTEGER K, L, IMAX
Shared REAL T1(10),T2(10),TT(10)
Shared REAL TMAX
End declarations
Barrier

C K=4 *NP
READ(5,*) A,DELTA,K,EPS
1L=30
write(6,*) a,delta,k,l,eps
End barrier
T1(ME)=Tsecnd()
Forcecall GOLD(K,A,DELTA,FMIN,AA,ALPHA,FVALUE,EPS,L)
T2 (ME)=Tsecnd()
TT (ME)=T2 (ME) -T1 (ME)

Barrier
c WRITE(6,*) ‘MIN. F=’,FMIN
C WRITE(6,*) 'ALPHA =’,AA,’with EPS=',EPS

IMAX=Ismax (NP, TT, 1)

TMAX=TT (IMAX)

WRITE(6,*) ‘Time used=’,TMAX

End barrier

Join

END

C ***

Forcesub GOLD(K,A,DELTA,FMIN,AA,ALPHA,FVALUE,EPS,L) of NP ident ME
REAL ALPHA(L),FVALUE(L)
REAL A,EPS,AA,FMIN

Private INTEGER J

INTEGER K

Shared INTEGER ICOUNT,KK,KKl,KKZ,II,IMIN,IQMl,IQPl,I
shared REAL CC,GR,DB,CCC,BK,SGR,B,A0

End declarations

Barrier

CC=FLOAT (K**2+4 *K)

SGR=0.5*SQRT(5.0)+0.5
GR=0.5%* (FLOAT (K) +SQRT (CC))

KK = 2*K

KK1l=kk+1

kk2=kk+2

ALPHA (1)=DELTA

DO 30 I=2,12

ALPHA (I)=ALPHA (I-1)+DELTA* (SGR**(I-1))
write(6,*) ‘alpha(i)’,i,alpha(i)

30 CONTINUE

End barrier

Presched DO 40 J=1,12

CALL FUNCT (ALPHA (J) ,FVALUE(J))
write(6,*) ’alpha,fvalue’,alpha(j),fvalue(j)

40 End Presched DO

Barrier

IMIN=ISMIN (12, FVALUE,1)

IQM1=IMIN-1

IQP1=IMIN+1

A=ALPHA (IQM1)

B=ALPHA (IQP1)

AO=A

write(6,*) ‘a,b’,a,b

10

20

25

100

DB=B-A
BK=DB/K
FVALUE (1) =FVALUE (IQM1)
FVALUE (KK1)=FVALUE (IQP1)
FVALUE (KK2)=100000.00
ICOUNT=1
End barrier
CONTINUE
Barrier
ALPHA(1)=A
ALPHA (2)=A+(1.0/GR) ** ICOUNT*DB
II=ABS(1-ICOUNT)
CCC=BK/ (GR**II)
DO 20 I=3,KKl1,2
ALPHA(I)=ALPHA(I-2)+CCC
ALPHA (I+1)=ALPHA (I-1)+CCC
CONTINUE
End barrier
Presched DO 25 J=2,KKl1
CALL FUNCT (ALPHA (J) ,FVALUE(J))
End presched DO
Barrier
IMIN=ISMIN (KK2,FVALUE, 1)
FMIN=FVALUE (IMIN)
AA=ALPHA (IMIN)
WRITE (6, *) ’alpha=’,AA,’FMIN=’,FVALUE(IMIN)
IQP1=IMIN+1
IQM1=IMIN-1
End barrier
IF (ABS (AO-ALPHA (IMIN)).LT. EPS) GO TO 100
Barrier
A=ALPHA (IQM1)
B=ALPHA (IQP1)
AO=ALPHA (IMIN)
FVALUE (KK2) =FVALUE (IQP1)
FVALUE (1) =FVALUE (IQM1)
ICOUNT=ICOUNT+1
End barrier
GO TO 10
RETURN
END

C kkhkkhkhkkkhkkkhkhkkkhhkkhhkhkhkhkhkhhhhhkhkhhkhkkhdkkhkhkhhhhkhkhhhhhkhkhdkk

QOO0

40

20

SUBROUTINE FUNCT(T,F)
REAL T,F
REAL sign, fact,value
INTEGER I,j
do 40 nn=1,100
F=2.0-4.0*T+EXP(T)
F=COS (T)
f=f+f
£f=2.0-4.0*t+exp(t)
F=1.0
sign=1.0
do 10 i=2,600,2
sign=sign*(-1.0)
fact=1.0
value=1.0
do 20 j=1,i
fact=fact*j
value=value*t

10

f=f+sign*value/fact
continue

RETURN

END

APPENDIX C: Parallel FORTRAN Listing of Subroutine BFGS

c
C
C

QOHOOO0

o (o]

THIS PROGRAM IS WRITTEN ON JULY 20 1989 BY : MAJDI BADDOURAH
THIS PROGRAM WILL SOLVE UNCONSTRAINED NONLINEAR OPTIMIZATION
USING B F G S METHOD

Force MAB of NP ident ME

Shared DOUBLE PRECISION H(1000000),C(800),D(800),X(800),CS(800)
Shared DOUBLE PRECISION H1(100000)

Shared DOUBLE PRECISION F(800),HH(800),G(800),S(800),Y(800)
Private DOUBLE PRECISION CP (800)

Shared INTEGER MAXA({800),ICOLH(800),ISWTCH

Shared INTEGER IFLAG, IW, IR,NTERMS,N,MXNITB,NBW,MXNITS, JELAG
Shared DOUBLE PRECISION TOLBFG, TOLSOR, THETIM, TIMAX,PI,DIV
REAL*8 TIME1l(16),TIME2(16),TIMER

Shared DOUBLE PRECISION TIMEEl (16),TIMEEZ(16)

Shared LOGICAL TYPEl, TYPE2

End declarations

Barrier

DIV = 1000000.
PI = ACOS(-1.0)
IR = 5

IW =6

WRITE(6,*)’ ENTER NUMBER OF EQUATIONS & 1 FOR ALFA 2 FOR NO ALFA’
WRITE(6,*)’ ENTER ISWITCH '
READ (5, *) N,JFLAG, ISWTCH

MXNITB = 500

MXNITS = 300

NBW = N

TOLBFG = 1.0E-01

TOLSOR = 1.0E-05

WRITE (IW,*)’ ENTER TOL FOR BFGS TOL FOR SOR '
READ ({5, *) TOLBFG, TOLSOR
NTERMS = 0

ISUM = 1

MAXA(1l) =1
po10r=1, N, 2
ICOLH(I) =0

ICOLH(I+1) =1

NTERMS = NTERMS + ICOLH(I)

ISUM = ISUM + ICOLH(I-1)

MAXA(I) = ISUM

ISUM = ISUM + ICOLH(I)

MAXA (I+1) = ISUM

CONTINUE

MAXA (N+1) = MAXA(N) + ICOLH(N) + 1

NTERMS = NTERMS + N

DO 11 I =1, N

ICOLB(I) = I -1

CALL ADD1 (N, ICOLH, MAXA, NTERMS)

WRITE (6, *)’ NUMBER OF EQUATIONS = ’,N

WRITE(6,*)’ NUMBER QOF TERMS = ’,NTERMS

WRITE(6,*)’ COL HIEGHT = 7, (ICOLH(I),I=1,N)

WRITE(6,*)’ MAXA = ', (MAXA(I),I=1,N+1)

End barrier

TIME1 (ME) = SECOND()

TIME1 (ME) = TSECND ()

Critical TYPE1l

TIME1 (ME) = TIMER()

TIMEEl (ME) = TIMEl (ME)

End critical

Forcecall BFGSOQP (IW,IR,N,NTERMS,H,Hl,C,D,X,CP,CS,Y,S,MAXA,ICOLH,
& MXNITB,MXNITS,TOLBFG,TOLSOR,NBW,F,HH,G,JFLAG,ISWTCH,DIV,PI)

TIME2 (ME) = SECOND{)}

TIME2 (ME} = TIMER()

TIMEE2 (ME) = TIME2 (ME)

C120

130

°g]

-———>

(oNO NS

10

20

C --->

Barrier
TIMAX = 0.0
DO 120 I =1 , N

WRITE(IW,*}" X(’',I,’” }y = ',X(I)
WRITE(IW,*) ‘X(1) = ',X(1)
WRITE(IW,*) 'X(',N,’) = ',X(N)

DO 130 I = 1 , NP

THETIM = (TIMEE2(I) - TIMEE1(I)) / 1000000.

WRITE (IW,*)’ PROCESS NO : ',I,’ TIME = ‘,THETIM
TIMAX = MAX (TIMAX,THETIM)

CONTINUE

WRITE(IW,*) ’/ THE MAX TIME = ‘,TIMAX

WRITE(6,*)’ NP = ’,NP , TIME = ‘,TIME2(I) - TIME
End barrier

Join

END

Forcesub BFGSOP (IW,IR,N,NTERMS,H,H1,C,D,X,CP,CS,Y,S5,MAXA, ICOLH,
MXNITB,MXNITS, TOLBFG, TOLSOR,NBW, ¥, HH,G, JFLAG, ISWTCH,DIV,PI)

of NP ident ME

DOUBLE PRECISION H(NTERMS),C(N),D(N),X(N),CP(N),CS(N),Y(N)

DOUBLE PRECISION S(N),F(N),HH(N),G(N),Hl (NTERMS)

DOUBLE PRECISION TOLBFG, TOLSOR,DIV,PI

INTEGER MAXA (N+1), ICOLH(N)

Shared DOUBLE PRECISION W,ALFA,SUMS1,SUMS2,SUMS3,DELTA, CONST,CONST1
REAL*8 TCl(16),TC2(16),TS1(16),TS2(16),TALFP(16),TALFW(16)

Shared DOUBLE PRECISION TCE1(16),TCE2(16),TSE1(16),TSE2(16)

Shared DOUBLE PRECISION TALF1(16),TALF2(1l6)

Private DOUBLE PRECISION SUMP1l, SUMP2

Private INTEGER ITEMP

Shared LOGICAL TYPEl,TYPEZ,TYPES3

End declarations

SUMP1 = 0.0

SUMP2 = 0.0

DIV = 1000000.0

TSE1l (ME)
TSE2 (ME)
TCE1l (ME)
TCEZ2 (ME)
TALF1 (ME)
TALF2 (ME)

QOO OO

0.
0.
0.
0.
= 0.0
= 0.0

Barrier
READ Initial guess for BFGS
Write(6,*) ' READ Initial guess for BFGS , Two values
READ (5, *) CONST , CONST1
DELTA = .01

SuMsl = 0.0

SUMS2 = 0.0

ALFA = 1.00
Ww=1.0

DO 10 I = 1,NTERMS
H(I) = 0.0
CONTINUE

DO 20 I = 1,N
H(MAXA(I)) = 1.0
CONTINUE

End barrier

Barrier
End barrier
Initial guess for BFGS

Presched do 11 I =1, N,2
X(I) = .10
X(I+1) = .40

11

30

60

End Presched do

Barrier
End barrier

Forcecall FSTD (N,C,X,NBW)
write(6,*)'cl(i) c2(i)',c{l),c(2)

Barrier
End barrier

Presched do 8 I =1 , N

D(I) = - C(I)

C(I) = -C(I)

End Presched do

write(6,*)’di(i) d2(i)’,d(1),d(2)

Barrier
End barrier

--------------- ITTERATION START AT THIS LEVEL ----—---=-==—====-=

DO 100 ICONT = 1 , MXNITB

Barrier

pc 30 I = 1,N

SUMS3 = SUMS3 + C(I) * C(I)

CONTINUE

SUMS3 = DSQRT (SUMS3)

write(iw,*)" T H E NORM = ’,SUMS3
SyMSl = 0.0

SUMS2 = 0.0

End barrier

Barrier
End barrier

IF(SUMS3 .LT. TOLBFG) GO TO 110
TALFP (ME) = TIMER()
TALF1l (ME) = TALF1(ME) + TALFP(ME)

Barrier

IF (JFLAG.EQ. 1) THEN

CALL ALFAQ (N, X,D,G,ALFA, TOLBFG, DELTA, C)
CALL GOLDEN (N, X,D,G,ALFA, .000001,DELTA,C)
WRITE(6,*)’ A LF A -=—-==—-—-——- > ' ,ALFA

ENDIF

End barrier

TALFW(ME) = TIMER()

TALF2 (ME) = TALF2(ME) + TALFW(ME)
Presched do 60 I = 1,N

X(I) = X(I) + ALFA * D(I)

Y(I) = C(I)

SUMP2 = SUMP2 - C(I) * D(I)

End presched do

write(6,*) "x1(i) x2(i)’,x(1),x(2)
Barrier
End barrier

Critical TYPE1l

SUMS2 = SUMS2 + SUMP2
sSuMP2 = 0.0

End critical

81
91

70

80
30

92

31

32

Barrier
End barrier

Presched do 91 I =1
ITEMP = I

14

N

DO 81 J = MAXA(I) , MAXA(I) +
H(J) = H(J) + C(I) * C(ITEMP)

ITEMP = ITEMP - 1
End presched do

Barrier
End barrier

Forcecall FSTD (W,C, X,NBW)

Barrier
End barrier

Presched do 70 I = 1,N

Y(I) = C(I) + Y(I)
SUMP1 = SUMP1 + Y(I)
End presched do

Barrier
End barrier

Critical TYPE1l

SUMS1 = SUMS1 + SUMP1
SUMP1 = 0.0

SUMS3 = 0.0

End critical

Barrier
End barrier

Presched do 90 I = 1
ITEMP = I

ICOLH(I)
/ SUMS?2

* ALFA * D(I)

14

N

DO 80 J = MAXA(I) , MAXA(I) + ICOLH(I)
H(J) = H(J) + Y(I) * Y(ITEMP) / SUMS1

ITEMP = ITEMP - 1
End presched do

Forcecall FSTD (N,C,X,NBW)

Barrier
End barrier

Presched do 92 I = 1
C(I) = =-C(I)
End Presched do

Barrier
End Barrier

I

N

IF(ICONT .LT. ISWTCH) THEN

Presched do 31 i = 1
H1(i) = H(i)
End presched do

Presched do 32 I =1
D(I) = C(I)

End presched do
ENDIF

Barrier
End barrier

14

’

N

nterms

C write(6,*)’C(I) = ’,(C(I),I=1,N)

C write(6,*)’'D(I) = *,(D(I),I=1,N)

C write(6,*)’ h(I) = *, (h(I),i=1,nterms)
IF(ICONT .LT. ISWTCH) THEN
TC1(ME) = TIMER()

TCE1(ME) = TCEl1(ME) + TC1l(ME)
Forcecall FF(H1,MAXA,D,N,1,ICOLH)
Forcecall FF(H1,MAXA,D,N,2,ICOLH)
TC2(ME) = TIMER()

TCE2 (ME) = TCE2(ME) + TC2(ME)
ELSE

TS1(ME) = TIMER()

TSE1 (ME) = TSE1(ME) + TS1(ME)
Forcecall SORI1 (N,NTERMS,H,C,D,CP,CS,MAXA,NBW, TOLSOR, MXNITS,W, ICOLH)
TS2(ME) = TIMER()

TSE2 (ME) = TSE2(ME) + TS2(ME)
ENDIF

C write(6,*)'D(I) = *,(D(I),I=1,N)
Barrier

c PO 140 I =1 , N

€140 WRITE(IW,*) ' X{(',I,") = ',X(I)

End barrier
100 CONTINUE

110 CONTINUE

Barrier

WRITE(IW,*)’ NUMBER OF ITTERATIONS = ', ICONT
C DO 120I =1, N
Cl120 WRITE(IW,*) 7 X(',I,”) = ',X(I)

DO 130 I =1 , NP

TIMEC = (TCE2(I) - TCE1l(I)) / DIV
TIMES = (TSE2(I) - TSE1(I)) / DIV
TIMEA = (TALF2(I) - TALF1(I)) / DIV

WRITE(6,*)’ CHOL TIME @ PROC # ’,I,’ TIME = ’',TIMEC
WRITE(6,*)’ SOR TIME @ PROC # ',I,’ TIME = ',TIMES
WRITE(6,*)’ ALFA TIME @ PROC # ’,I,’ TIME = ’',TIMEA
130 CONTINUE
o Write(6,*)’ H(I) =', (H(I),I= 1,NTERMS)
End barrier
RETURN
END

Forcesub FSTD (N,F,X,NBW) of NP ident ME
DOUBLE PRECISION F(N),X(N)

Private INTEGER MSTART,MEND

Shared INTEGER NBWT

Private DOUBLE PRECISION SUM

End declarations

NBWT = NBW - 1

Presched do 20 I =1 , N

F(I) = 0.0

SUM = 0.0

MEND = MIN(N,NBWT+I)

IF (I .LT. NBW) THEN

MSTART = 1

ELSE

MSTART = I - NBWT

ENDIF

DO 10 J = MSTART , MEND

IF(I .EQ. J) THEN

F(I) = F(I) + 2.0 * X(I) * X(J) * X(J)

10

20

10

20

10
20

SCM = SUM + 2.0

ELSE

F(I) = F(I) + (L.0/(I+J)) * X(I) * X(J)
SUM = SUM + (1.0/(I+J))

ENDIF

CCONTINUE

F(I) = F(I) - SuM

End presched do

RETURN

END

SUBRQUTINE NEWF (N,F,X,NBW)
DOUBLE PRECISION F(N),X(N)
INTEGER MSTART,MEND
INTEGER NBWT

DOUBLE PRECISION SUM

NBWT = NBW - 1

do 20 I =1, N

F(I) = 0.0

SUM = 0.0

MEND = MIN(N,NBWT+I)

IF (I .LT. NBW) THEN

MSTART = 1

ELSE

MSTART = I - NBWT
ENDIF

DO 10 J = MSTART , MEND

IF(I .EQ. J) THEN

F(I}) = F(I) + 2.0 * X(I) * X(J) * X(J)
SUM = SUM + 2.0

ELSE

* X(J)

F(I) = F(I) + (1.0/(I+J)) * X(I) * X(J) * X(J)

SUM = SUM + (1.0/(I+J))
ENDIF

CONTINUE

F(I) = F(I) - SUM

End presched do

RETURN

END

Forcesub FSTDD11 (N,C,X) of NP ident ME

DOUBLE PRECISION C({N),X(N)
DOUBLE PRECISION PI

Shared DOUBLE PRECISION PII
Private INTEGER TEMP10

End declarations

PII = ACOS{ -1.0)

Presched do 20 I =1 , N
C(I) = 1.0

DO 10 J =1, N

IF(I .EQ. J) THEN

C(I) = C(I) * DCOS(X(I}))
ELSE

C(I) = C(I) * DSIN(X(J))
ENDIF

TEMP10 = FLOAT(I)

C(I) = C(I) + X(I) - TEMP10 * PII
CONTINUE

End presched do

RETURN

END

Forcesub FSTD23 (N,C,X) of NP ident ME

DOUBLE PRECISION C(N),X(N)

10

10

20

10

10

OO0 O0O000

10

End declarations

Presched do 10 I =1 , N , 2

C(I) = 10.0 * X(I) + 2.0 * X(I+1)
C(I+1l) = 2.0 * X(I) + 2.0 * X(I+1)
End presched do

RETURN

END

SUBROUTINE FUNCT (N,X,SUM,C)
DOUBLE PRECISION X (N),SUM,C(N)
SuM = 0.0

DO 10 I =1, N

SUM = SUM + (X(I)**4) / 2.0

CONTINUE
D020 =1, N-1
DO 20 J = I+l , N

SUM = SUM + { (X(T)**2) * (X(J)**2) /(2.0%(I+J})
CCNTINUE

DC 40 I
SUMM2 =
DC 30 J =
IF(I .EQ. J) THEN
SUMM?2 SUMM2 + 2
ELSE
SUMM2
ENDIF
CONTINUE

SUM = SUM - SUMM2Z * X(I)
CONTINUE
DO 10 I =

| © |

SUMM2 + (1.0/(I+J))

1

N, 2

1,
SUM = (X(I)**4)/2 +(X(I)**2) * (X(I+1)**2)/6.0 +(X(I+1)**4)/2.0
/

- 7.0*X{(I)
CONTINUE
RETURN
END

3.0 -7.0*X(I+1)/3.0 + SUM

SUBROUTINE FUNCT9 (N, X, SUM)
DOUBLE PRECISION X (N),SUM
po10r=1, N, 2

SUM = 5.0 * (X(I) **2) + 2.0 * X(I) * X(I+l) + X(I+1)**2 + 7

+ SUM
CONTINUE
RETURN
END

Forcesub FSTD19 (N,C,X) of NP ident ME
DOUBLE PRECISION C(N),X(N)

End declarations

Do 10 I =1, N, 2

C(I) = X(I+1l) + 2.0 * X(I) = (X(I+1l)**2) + EXP(X(I))
C(I+1) = X(I) - 2.0 * X(I) * X(I+l)

RETURN

END

SUBRQUTINE FUNCTZ2 (N,X,SUM)
DOUBLE PRECISION X(N),SUM
SUM = 0.0

DO10I =1, N, 2

SUM = X(I) * X(I+1l) + (X(I)**2) - X(I) * (X (I+1)**2) + EXP (X(I))
& + SUM

CONTINUE
RETURN
END

QOO0

QOO0

10

20

30
40

50

60

Cx

aaQa

70

80

Forcesub FSTD1l (N,C,X) of NP ident ME
DOUBLE PRECISION C(N), X (N)
End declarations

C(l) = 400 *((X(1)**2) - X(2)) * X(1) - 2.0 * (1.0 - X(1))
C(2) = -200 * ((X(1)**2) -X(2))

RETURN

END

SUBROUTINE FUNCT1 (N,X,SUM)

DOUBLE PRECISION X(N),SUM

SUM = 100 * (((X(l)**2)-X(2)) **2) + ((1.0 - X(1)) **2)
RETURN

END

SUBROQUTINE GOLDEN (NR,B,S,D,ALFA,TOL,DELTA,C)
DOUBLE PRECISION B(NR),C(NR),S(NR),D(NR)
DOUBLE PRECISION ALFAA,ALFA,ALFAL,ALFAB,ALFAU,F1,F2,FA,FB,DELTA
DELTA = .01

write(6,*) ’ subroutine golden is used after '

write(6, *) ‘delta tol, ‘,delta,tol
TOL1=TOL
ALFA=0.0
F1=0.0
DO 30 I=1,30
ALFAA=ALFA
ALFA=ALFA+DELTA* (1.618**I)
DO 20 J=1,NR
D(J)=B(J)+ALFA*S (J)
F2=F1
CALL FUNCT (NR,D,F1,C)
write(6,*)’ f1,d1,d2’,F1,D(1),D(2)
IF(I.EQ.1) GO TO 30

IF(F1.GT.F2) GO TO 40
CONTINUE
ALFAU=ALFA
ALFAL=(ALFAA-.382*ALFAU)/.618
ALFAB=.618* (ALFAU-ALFAL) +ALFAL
DO 50 N=1,NR
D (N)=B(N)+ALFAB*S (N)
CALL FUNCT (NR,D,FB,C)
write(6,*)’ £2,d1,d2’,Fb,D(1),D(2)
DO 60 N=1,NR
D (N)=B(N) +ALFAA*S (N)
write(6,*)’ fa,dl,d2’,Fb,D(1l),D(2)
CALL FUNCT (NR,D,FA,C)
WRITE (6, *) "ALFAL, ALFAU’ ,ALFAL, ALFAU
DO 90 KJ=1,100
WRITE (6, *)
WRITE (6, *)KJ
WRITE (6, *)

IF(FA.LT.FB) THEN
ALFAU=ALFAB

ALFAB=ALFAA
ALFAA=ALFAL+.382* (ALFAU-ALFAL)
FB=FA

DO 70 N=1,NR

D (N})=B(N)+ALFAA*S (N)

CALL FUNCT (NR,D,FA,C)
ELSE IF(FA.GT.FB) THEN
ALFAL=ALFAA

FA=FB

ALFAA=ALFAB

ALFAB=ALFAL+.618* (ALFAU-ALFAL)
DO 80 N=1,NR

D (N) =B (N) +ALFAB*S (N)

CALL FUNCT (NR,D,FB,C)

30
100

10

20

30

35

40

60
50

ELSE IF(FA.EQ.FB) THEN

ALFAL=ALFAA

ALFAU=ALFAB

ALFAA=ALFAL+,382* (ALFAU-ALFAL)
ALFAB=ALFAL+,618* (ALFAU-ALFAL)
ENDIF

IF (DABS (ALFAA-ALFAB) .LT.TOL1l) GO TO 100
CONTINUE

ALFA= (ALFAA+ALFAB) /2

WRITE (6, *)’ALFA Krkx kK k**XAK! ATEA
RETURN

END

SUBROUTINE ALFAQ (NR,B,S,D,ALFA,TOL,DELTA,C)
DOUBLE PRECISION B(NR),S{(NR),D(NR),C(NR)
DOUBLE PRECISION ALFA,TOL ,DELTA,Fl,FZ,F3,CCl,CC2,CHEK,ALFAZ,ALFAI
DOUBLE PRECISION ALFA3

INTEGER JCONT

WRITE (6, %)/ X**xxkkxxx SUBRQUTINE ALFAQ IS USED *kokkok Kk kkk!
WRITE(6,*) ‘ ALFA = ',ALFA,’ TOL = ’,TOL,’ DELTA = ’,DELTA
JCONT=1

ALFAl1=0.0

ALFAZ2=DELTA

ALFA3=2*ALFA2

CALL FUNCT (NR,B,F1l,C)

write(6,*) " F1 = ’,Fl

DO 20 I=1,NR

D(I})=B(I)+ALFA2*S (I)

CALL FUNCT (NR,D,F2,C)

write(6,*) / F2 = ',F2

DO 30 I=1,NR

D(I)=B(I)+ALFA3*3(I)

CALL FUNCT (NR,D,F3,C)

write(6,%*) ' F3 = ',F3

CHEK=((F3+F1l)/2)~-F2

WRITE (6, 35)F3,F2,F1,ALFA2,CHEK

FORMAT (7F10.3)

IF{(CHEK.LT.0.0) GO TO 40
CCl=(4.0*F2-3.0*Fl—F3)/(Z*ALFAZ)
CC2=(F3+F1—2.0*F2)/(2.0*(ALFA2**2))
IF(CC2.EQ.0.0) GO TO 50

ALFA=-CCl/(2.0*CC2)

GO TO 50

ALFA2=ALFA2+ALFA2*(1.618**JCONT)

WRITE (6, *)’ CHEK’,CHEK

IF(ABS(CHEK) .LT.1.0D-40) THEN

WRITE (6,*)’ THE FUNCTION DOES NOT HAVE ANY MIN POINT’
GO TO 60

ENDIF

JCONT=JCONT+1

GO TO 10

STOP

RETURN

END

Forcesub FF (A,MAXA,B,NEQ,M, ICOLH) of NP ident ME
DOUBLE PRECISION A(1l),B(1l)
INTEGER MAXA(l),ICOLH(1l)
Shared INTEGER jops(16)
Private INTEGER I,J,K,L ,ipdig ,iloc,idig,ii,jj,14,11,15,1i6
Private INTEGER IP1,IP2,IIpl,IIp2,IPloc,IPLOCa,IP3,IP4,IIP3,IIP4
Private INTEGER Jpl,Jp2,Jjpl,JJp2
Private DOUBLE PRECISION SUMl,SUMZ,SUM3,SUM4,Yl(10000),Y2(10000)
Private DOUBLE PRECISION SUM, TEMP
Shared INTEGER IS1,IS2,N

INTEGER NEQ,M, iops
Shared Logical ialoc

c Async DOUBLE PRECISION X (10001)
Async DOUBLE PRECISION X (10001)
End declarations

(¢}

Barrier

WRITE(6,*) ‘MAXA(I)= ', (MAXA(I),I=1,NEQ+1)
WRITE(6,*) "ICOLH(I)= ', (ICOLH(I),I=1,NEQ)
WRITE(6,*) 'A(NTERMS)= ', (A(I),I=1,MAXA(NEQ+1l)-1)
WRITE(6,*) '"B(NEQ)= ', (B{(I),I=1,NEQ)

End barrier

O00000

IF(M.EQ.1) THEN
C*************************************
Presched DO 10 I=1,NEQ
Void X (I}
10 End Presched DO
jops=0
Barrier
jops=0
jops=jops+1l
Produce X(1l)=A(1l)
isl=neqg - 2*(neq/2)
if (isl.eq.0) then
isl=2
if (maxa(3) .eq. 4) then
a(3)=a(3)/a(l)
a(2)=(a{2)-a{3)*a(3)*a(l))
jops=jops+4
Produce x(2)=a(2)
else
jops=jops+l
Produce x(2)=a(2)
endif
endif
End barrier
Presched DO 20 I=isl+l,neq,?2
IP1=MAXA(I)
IP2=MAXA (I+1)
IIpl=IP1+I
IIp2=IP2+i+l
IPLOC=I-ICOLH(I)
IIP3= ICOLH(I)=-2*(ICOLH(I)/2)
IPLOCA=IPLCC
IF (IIP3.EQ.l1l) THEN
IPLOCA = IPLOC +1
ENDIF
IIP4 = IPLOCA + 2* (((ICOLH(I)/2) +1) /2) -1
Copy X(IIP4) into TEMP
IF (IIP3.EQ.1l) THEN
yl(iploc)=a(iipl-iploc)
A(IIP1-IPLOC) = yl(IPLOC)/A(MAXA(IPLOC))
y2(iploc) =a(iip2-iploc)
A(IIP2-IPLOC) = y2(IPLOC) /A(MAXA(IPLOC})
jops=jops+4
ENDIF
25 continue
DO 30 J=IpLOCa,IIP4,2
Jpl=MAXA (J)
JP2=MAXA (j+1)
JJPl= JP1l+J
JJIP2= JP2+J+1
SUM1=0.0
sum2=0.0
sum3=0.0

C

sum4=0.0
ipdig=3j - icolh(3)
if (IPLOC .gt. IPDIG) IPDIG=IPLOC

if(A(Ipl)-SUM.LE.0.0) write(*,*) ’‘Matrix not pos. definite’

CDIRS IVDEP

40

30

50

20

DO 40 k=IpDIG,J-1
suml=suml+a(jjpl-k) *Y1l (k)
sumZ=sumZ+a {jjpl-k) *y2 (k)
sum3=sum3+a (jjp2-k) *yl (k)
sum4=sumd+a (jjp2-k) *y2 (k)

CONTINUE
lth=j-ipdig
if (1th.gt.0) jops=jops+ 8*lth
yl(j)= (a(iipl-j)-suml)
y2(3)= (a(iip2-j)-sum2)
a(iipl-j) = yl(j)/a(jpl)
a(iip2-j) = y2(j)/a(jpl)
yl(j+1)= (a(iipl-j-1)-sum3-yl(Jj)*a(jjp2-3))
y2(j+1l) = (a(iip2-j-1)-sumé4-y2(J)*a(jjip2-3))

a(iipl-j-1)= yl(j+1)/a(jp2)
a{iip2-j-1) = y2(j+l)/a(jp2)
jops=jops + 12
CONTINUE
IF (IIP4 .LT. I-1l) THEN
IPLOCA=IIP4+1
IIP4=I-1
Copy X(IIP4) into TEMP
go to 25
ENDIF
suml=0.0
sum2=0.0
sum3=0.0

DO 50 K=IpLOC,I-1
suml=suml+a (iipl-k) *yl (k)
sum2=sum2+a (iipl-k) *y2 (k)
sum3=sum3+a(iip2-k) *y2 (k)

CONTINUE

jops = jops + 6*(i-iploc)

a(ipl)={a(ipl)-suml)

Produce X{i)=a(ipl)
a(ip2+l)=(a(ip2+1)-sum2)/a(ipl)
a(ip2) = (a(ip2) -sum3 -a(ip2+l)*a(ip2+1)*a(ipl))
k=i+1
Produce X(K)=a (ip2)
jops=jops + 8

End Presched do

ELSE
jops=0
Barrier
jops=jops+l
isl=neq-2*(neq/2)
if (isl.eq.0) then
isl=2
if (maxa(3).eq.4) then
B(2)=(b(2)-a(3)*b(l))
jops=jops+3
endif
endif
DO 510 I=isl+l,neq,2
SUM=(0.
suml=0.0
JJI=MAXA (I)
II=ICOLH(I)

jpl=maxa (i+1)+1
DO 520 J=II,1,-1
SUM=SUM+A (JJ+J) *B(I-J)
suml=suml+a (jpl+3j) *b(i-3J)
520 CONTINUE
jops=jops+ii*2+8
B(I)=(B(I)-SUM)
b(i+l)=(b(i+1l) =-suml -b(i)*a(jpl))
510 continue
do 1005 i=1, neq
b{(i)=b(i)/a(maxa(i))
1005 continue
DO 1010 I=NEQ,isl+l,-2
JJ= MAXA(I)
jpl=maxa(i-1)
B(I)=B(I)
B(I-1)=(b(i-1) -a(jj+1)*b(i))
lth=icolh(i)-1
c$dir no_recurrence
DO 1020 J=I-ICOLH(I),I-2
B(J)=b(J)-B(I)*A(JJ+I-J)-b(i-1)*a(jpl+i-j-1)
1020 CONTINUE
if (1th.gt.0) jops=jops+lth*4+4
1010 Continue
jops=jops+l
if (isl.eq.2) then
if (maxa(3) .eq. 4) then
b(l)y=(b(l)-a(3)*b(2})
jops=jops+3
else
jops=jops+l
endif
endif
Cuivivenn QUTPUT FROM LINEAR SOLVER
Cx**xx*C WRITE(6,78) (B(I),I=1,6)
78 FORMAT (2X,’ SOLVER=',6El1l.4)
End Barrier
ENDIF
RETURN
END
CHEHEEIFITETHTEFEEEETEBTHE55%%%
SUBROUTINE ADD1 (NEQ, ICOLH,maxa,nterms)
INTEGER ICOLH(1l),maxa(l)
ISKIP=1
IF(NEQ-2*(NEQ/2) .EQ.0) ISKIP=2
DO 201 J=ISKIP+1,NEQ,2
IDIF=ICOLH(J+1)-ICOLH(J)
IF(IDIF.LT.1l) THEN
ICOLH(J+1)=ICOLH(J)+1
ELSE
IF(IDIF.GT.1l) THEN
ICOLH(J)=ICOLH(J+1)-1
ENDIF
ENDIF
201 CONTINUE
do 20 i=1,neg+l
20 maxa (i)=0
maxa (1) =1
maxa (2)=2
do 10 i=2,neq
10 maxa (i+l)=maxa (i) +icolh(i)+1
nterms=maxa (neq+l) -1
RETURN
END

Forcesub SORl(N,NTERMS,A,B,X,C,CC,MAXA,NBW,TOL,MAXNIT,W,ICOLH)
& of NP ident ME
DOUBLE PRECISION A(l),B(l),X(1l),CC(l),TCL,W
DOUBLE PRECISION C(1l)
Shared DOUBLE PRECISION THEMAX, THENOR
INTEGER MAXA (1), ICOLH(1),N,ISOLVE, NBW,MAXNIT
Shared LOGICAL TYPE3
Shared LOGICAL TYPE4
Shared LOGICAL TYPEl
Shared LOGICAL TYPE2
Shared INTEGER MSTAGL,MENDGL, IGO,NROL, ISKIP
Private INTEGER MSTART,MEND
Private DOUBLE PRECISION TEMPP, SUM1, SUM2, XTEMP, TEMP
End declarations
Barrier
write(6,*) ‘first thing in SOR’
WRITE(6,*) 'MAXA(I)= ', {(MAXA(I),I=1,N+1)
WRITE(6,*) 'ICOLH(I)= ’, (ICOLH(I),I=1,N)
WRITE(6,*) 'A(NTERMS)= ', (A(I),I=1,MAXA(N+1)-1)
WRITE(6,*) 'B(NEQ)= ', (B(I),I=1,N)
End barrier
ISKIP = 1
IF (N-2 * (N/2) .EQ. 0) ISKIP = 2

eXoNeNe NP NSNS

DO 100 ICONT = 1,MAXNIT

c Barrier
c End barrier

Presched do 11 JCONT = 1,NP
DO 10 T = 1,N
c(I) = 0.0

10 CONTINUE

11 End presched do

Presched do 12 I = 1,N
CC(I) = 0.0
12 End presched do
Barrier
IF (ISKIP .EQ. 2) THEN
IF (ICOLH(2) .EQ. 1) THEN
C(ly = X(2) * A(3)
ENDIF
ENDIF
End barrier
C % ¥ %k %k Kok kK ok ok ok ok ok ke k P R E S C H E D D O L o o P dc vk Je Kk Kk Kk Kk kh ok ok ok kk
C Presched do 30 I = ISKIP+1,NROL,2
Presched do 30 I = ISKIP+l1 , N, 2
C(I) = C(I) + X(I+1l) * A(MAXA(I+1)+1)
DO 20 J = I - ICOLH(I) ,I-1
C C(J)=C(J) + X(I)*A(MAXA(I)+I-J)
C(J)=C(J) + X(I)*A(MAXA(I)+I-J) + X(I+l) * A(MAXA(I+1)+I+1-J)
20 CONTINUE
30 End presched do

Critical TYPE1l

XTEMP = 0.0

TEMPP = 0.0

DO 29 I = 1,N

CC(I) = C(I) + CC(I)
29 CONTINUE

End critical

Barrier

40

50

100
110

78

TEMP = X (1)

X(1l) =W*((B(l) - CC(l))/A(MAXA(1l))) + (1-W)
THEMAX = ABS (TEMP - X (1))

XTEMP = ((TEMP -~ X (1)) **2)

TEMPP = X (1) **2

THEMAX = 0.0

THENOR = 0.0

End barrier

Presched do 50 K = 2,N

C(K) = B(K) - CC(K)

DO 40 J = K - ICOLH(K) ,K-1

C(K) = C(K) - A(MAXA(K) + K - J) * X(J)
TEMP = X (K)

* X(1)

X(K) = Wx(C(K) / A(MAXA(K))) + (1 - W) * X(K)

TEMPP = ABS (X(XK) - TEMP)

XTEMP = MAX (TEMPP,XTEMP)

XTEMP = XTEMP + ((X(K) - TEMP)**2)
TEMPP = TEMPP + (X(K)**2)

End presched do

Critical TYPEZ2

THEMAX = THEMAX + XTEMP
THENOR = THENOR + TEMPP
End critical

Barrier

THEMAX = SQRT (THEMAX)
THEMAX = SQRT (THEMAX) / SQRT(THENOR)
End barrier

write (6, *)’ themax tol ', themax, tol
IF (THEMAX .LT. TOL) GO TO 110
CONTINUE

CONTINUE

Barrier

WRITE(6,*)’ NUMBER OF ITTERATIONS IN GSM = ", ICONT

DO 79 I =1, 6

WRITE(6,78) X(1),X(2),X(3),X(4),X(5),X(6)
FORMAT (2X,’ S.O.R =',6E11.4)

End Barrier

RETURN

END

APPENDIX D: 8AP-4 Manual

REPORT NO.

EERC 73-11

JUNE 1973

REVISED APRIL 1974

EARTHQUAKE ENGINEERING RESEARCH CENTER

SAP IV

A STRUCTURAL ANALYSIS PROGRAM
FOR STATIC AND DYNAMIC RESPONSE
OF LINEAR SYSTEMS

by
KLAUS-JURGEN BATHE
EDWARD L. WILSON

FRED E. PETERSON

A Report to the

National Science Foundation

H Y

COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA - Berkeley, California

ABSTRACT

The computer program SAP IV for the static and dynamic analysis
of linear structural systems is presented.

The report is divided into three parts. In the first part the
reader is introduced to the logical construction of the program, the
dynamic high speed storage allocation, the analysis capabilities, the
finite element library and the numerical techniques used. Typical
running times are given. 1In the second part of the report several
sample analyses are described. These problems have been selected as
standard problems whose solutions are provided with the program. 1In

the last part of the report the user's manual of the program is given.

ACKNOWLEDGEMENTS

The development of the computer programs SAP including SAP IV has
been supported by many organizations during the past years. The final
phase of development and documentation of SAP IV was sponsored by
Grants GI 36387 and GK 31586 from the National Science Foundation.

The release of the previous version of the program, SAP III, was
restricted to agencies which sponsored our research. We are pleased
that many institutions in Europe and the United States responded
positively and that today we can make the latest version of the program
available for duplication and mailing costs only. By making our work
freely available, we hope that all those interested may profit from
the developments that have taken place.

We would like to thank the following agencies, and in particular
Engineering/Analysi§ Corporation, Berkeley, for their contributions

towards the development of this program:

France

Informatique Internationale, Rungis

West~-Germany

Germanischer Lloyd, Hamburg; Hochtief, Essen; Interatom, Bensberg/Koln;
Kraftwerk Union, Erlangen; MAN, Munchen

United States

Agbabian and Associates, Los Angeles, Calif.; Bechtel Corporation,

San Francisco, Calif.; Beloit Corporation, Beloit, Wisconsin;

Byron Jackson Pump Division of Borg Warner, Los Angeles, Calif.;

Dames and Moore, San Francisco, Calif.,; Engineering Mechanics Research
Corporation, Troy, Michigan; Fluor Corporation, Los Angeles, Calif.;
General Electric Company, San Jose, Calif.; Harza Engineering, Chicago,
Illinois; International Harvester Company, Chicago, Illinois;

ii

United States (continued)

Lockheed Missile and Space Company, Sunnyvale, Calif.; Martin and
Associates, Los Angeles, Calif.; Philadelphia Gear Corporation, King
of Prussia, Pennsylvania; Pregnoff/Matheu/Beebe, San Francisco, Calif.;
Sargent and Lundy Engineers, Chicago, Illinois; Stone and Webster
Engineering Corporation, Boston, Massachusetts; United Engineering,
Philadelphia, Pennsylvania; U.S. Army Corps of Engineers - Waterways
Experiment Station, Vicksburg, Mississippi; U.S. Army Corps of '
Engineers - Walla Walla District, Washington, D.C.; U.S. Department

of the Interior, Bureau of Mines, Denver, Colorado; U.S. Naval Civil

Engineering Laboratory, Port Hueneme, Calif.; Westinghouse Electric
Corporation, Pittsburgh, Pennsylvania; Woodward-McNeill and Associates,
Orange, Calif.; Yee and Associates, Honolulu, Hawaii.

iii

TABLE OF CONTENTS

Page
ABSTRACT ot v i ittt e e e e e e e e e e e e i
ACKNOWLEDGEMENTS v« v ¢ v v v v e v e e e e e e e o i1
TABLE OF CONTENTS v v v v v v o o o o o . e e e e iv
- PART A -
DESCRIPTION OF SAP IV

1. INTRODUCTION v v v v v e e e o e e e e e e e e 1
2. THE EQUILIBRIUM EQUATIONS FOR COMPLEX STRUCTURAL SYSTEMS . . 5
2.1 Element to Structure Matrices 5
2.2 Boundary Conditions ; e e e e e e e e e e e e e 6

3. PROGRAM ORGANIZATION FOR CALCULATION OF THE STRUCTURE
STIFFNESS MATRIX AND MASS MATRIX « . . 7
3.1 Nodal Point Input Data and Degrees of Freedom ., 7
3.2 Element Mass and Stiffness Calculations ., 8
3.3 Formation of Structure Stiffness and Mass ., , 11
4, THE ELEMENT LIBRARY « . o v v v v v .. 16
4.1 Three-Dimensional Truss Element , ., 16
4.2 Three-Dimensional Beam Element lé
4.3 Plane Stress, Plane Strain and Axisymmetric Elements . . 18
4.4 Three-Dimensional Solid Element ., . . ., . ., 18
4.5 Thick Shell Element « « v v v v o v . 18
4.6 Thin Plate and Shell Element . ., ., , « « . . . 19
4.7 Boundary Element ., 4 4 e e e 20
4.8 Pipe Element ., v v e e e e e e e e 20

iv

[

v et Ar T

I AT T

10.

TABLE OF CONTENTS (Cont.)

STATIC ANALYSIS v v v v v e e e v e e
5.1 Solution of Equilibrium Equations ., .
5.2 Evaluation of Element Stresses « « « o « o « o

CALCULATION OF FREQUENCIES AND MODE SHAPES

6.1 The Determinant Search Solutiom
6.2 The Subspace Iteration Solution, ., . .

6.3 Dynamic Optimization
DYNAMIC ANALYSES + ¢ v 4« v ¢ o v o o o o o o o o

7.1 Response History Analysis by Mode Superposition

7.2 Response History Analysis by Direct Integration

7.3 Response Spectrum Analysis

7.4 Restart Capability in Mode Superposition Analysis . ,
7.5 Mode Superposition Versus Direct Integration

DATA CHECK RUN+ « .« .

INSTALLATION OF SAP IV ON A SYSTEM OTHER THAN A CDC COMPUTER .

CONCLUDING REMARKS .,

- PART B -
SAMPLE ANALYSES

Static Analysis of Pipe Network .,
Static Shell Analysis « « « ¢« ¢« « « « .
Frequency and Mode Shape Analysis of Plane Frame .,
Response Spectrum Analysis of Pipe Network

Mode Superposition Time History Response Analysis of
Cantilever

Page

22
22
23
25
26
26
29
31
31
32
34
35
36
39
40

42

43

43"
47

47

51

TABLE OF CONTENTS {(Cont.)

6. Mode Superposition Time History Response Analysis of
Cylindrical Tube

7. Direct Integration Time History Response Analysis of
Cylindrical Tube

REFERENCES

- PART C -
APPENDICES

APPENDIX - DATA INPUT TO SAPIV

I. HEADING CARD

II. MASTER CONTROL CARD . . ., .,

III, NODAL POINT DATA . .,

v, ELEMENT DATA

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

1

2

THREE-DIMENSIONAL TRUSS ELEMENTS
THREE-DIMENSIONAL BEAM ELEMENTS
PLANE STRESS MEMBRANE ELEMENTS
TWO-DIMENSIONAL FINITE ELEMENTS

THREE-DIMENSIONAL SOLID ELEMENTS
(EIGHT NODE BRICK) .

PLATE AND SHELL ELEMENTS (QUADRILATERAL)
BOUNDARY ELEMENTS .

VARIABLE-NUMBER-NODES THICK SHELL AND
THREE-DIMENSIONAL ELEMENTS « . « . .

THREE-DIMENSIONAL STRAIGHT OR CURVED PIPE
ELEMENTS

vi

51

56

Page

57

II1.

III.

IvV.

Iv.

Iv.

1v.

1v.

1v.

Iv.

Iv.

Iv.

Iv.

SN ety o W————— g A g ¥E L o -

T

TABLE OF CONTENTS (Cont,)

V. CONCENTRATED LOAD/MASS DATA . .
VI, ELEMENT LOAD MULTIPLIERS

VII. DYNAMIC ANALYSES

VII.A. MODE SHAPES AND FREQUENCIES

VII.B. RESPONSE HISTORY ANALYSIS

VII.C. RESPONSE SPECTRUM ANALYSIS .

APPENDIX A - CONTROL CARDS AND DECK SET-UP FOR

ANALYSIS RESTART.

DYNAMIC

APPENDIX B - CONTROL CARDS AND DECK SET-UP FOR USE OF

STARTING ITERATION VECTORS.

vii

Page

VII.1

VII.3

VII.7

VII.23

b |

- PART A -

DESCRIPTION OF SAP IV

1. INTRODUCTION

The development of an effective computer program for structural
analysis requires a knowledge of three scientific disciplines --
structural mechanics, numerical analysis and computer application.

The development of accurate and efficient structural elements requires
a modern background in structural mechanics. The efficiency of a
program depends largely on the numerical techniques employed and on
their effective computer implementation, With regard to programming
techniques, an optimum allocation of high and low speed storage is
necessary.

A most important aspect of a general purpose computer program
is, however, the ease with which it can be modified, extended and up-
dated; otherwise, it may very well be that the program is obsolete
within a few years after completion. This is because new structural
elements are developed, better numerical procedures are available, or
new computer equipment which requires new coding techniques is produced.

The structural aﬁalysis program SAP was designed to be modified
and extended by the user. Additional options and new elements may
easily be added. The program has the canacity to analyze very large
three-dimensional systems; however, there is no loss in efficiency
in the solution of smaller problems. Also, from the complete program,
smaller special purpose programs can easily be assembled by simply
using only those subroutines which are actually needed in the execu-
tion. This makes the program particularly usable on small size

computers.

The current program version SAP IV for the static and dynamic analysis
of linear structural systems is the result of several years' research and
development experience. The program has proven to be a very flexible and
efficient analysis tool. The program is coded in FORTRAN IV and operates
without modifications on the CDC 6400, 6600 and 7600 computers. The first
version of program SAP was published in September 1970 [28]. An improved
static analysis program, namely SOLID SAP, or SAP II, was presented in 1971
[29]. Work was then started on a new static and dynamic analysis program.
The program SAP III for static and dynamic analysis was released towards
the end of 1972, but only to those agencies which supported our research.
In relation to SAP III, the current version SAP IV has improvements
throughout, and in particular has available a new variable-number-nodes
thick shell and three-dimensional element, and out-of-core direct
integration for time history analysis.

The structural systems to be analyzed may be composed of combinations
of a number of different structural elements. The program presently
contains the following element types:

(a) three-dimensional truss element,

(b) three-dimensional beam element,

(c) plane stress and plane strain element,

(d) two-dimensional axisymmetric solid,

(e) three-dimensional solid,

(f) variable-number-nodes thick shell and three-dimensional element,

(g) thin plate or thin shell element,

(h) boundary element,

(i) pipe element (tangent and bend).

These structural elements can be used in a static or dynamic analysis,
The capacity of the program depends mainly on the total number of nodal
points in the system, the number of eigenvalues needed in the dynamic
analysis and the computer used. There is practically no restriction

on the number of elements used, the number of load cases or the order
and bandwidth of the stiffness matrix. Each nodal point in the system
can have from zero to six displacement degrees of freedom. The element
stiffness and mass matrices are assembled in condensed form; therefore,
the program is equally efficient in the analysis of one-, two- or three-
dimensional systems.

The formation of the structure matrices is carried out in the same
way in a static or dynamic analysis. The static analysis is continued
by solving the equations of equilibrium followed by the computation of
element stresses. In a dynamic analysis the choice is between

1. frequency calculations only,

2. frequency calculations followed by response history analysis,

3. frequency calculations followed by response spectrum analysis,

4. response history analysis by direct integration.

To obtain the frequencies and vibration mode shapes solution routines
are used which calculate the required eigenvalues and eigenvectors
directly without a transformation of the structure stiffness matrix and
mass matrix to a reduced form. In the direct integration an uncondi-
tionally stable integration scheme is used, which also operates on

the original structure stiffness matrix and mass matrix, This way the
program operation and necessary input data for a dynamic analysis is

a simple addition to what is needed for a static analysis,

The purpose in this part of the report is to present briefly the
general program organization, the current element library and the
numerical techniques used. The different options available for static
and dynamic analyses are described and typical running times are
given. In the presentation, emphasis is directed to the practical
aspects of the program. For information on the development of the
structural elements and the numerical techniques used the reader is

referred to appropriate references,

RN T g

WL s e

——

2. THE EQUILIBRIUM EQUATIONS FOR COMPLEX STRUCTURAL SYSTEMS

2.1 Element to Structure Matrices

The nodal point equilibrium equations for a linear system of structural
elements can be derived by several different approaches [1] [2] [9] ([15]
[23] {34]. All methods yield a set of linear equations of the following
form |

MU +Cu +Ku =R 1)

where M is the mass matrix, C is the damping matrix and K is the stiff-
ness matrix of the element assemblage; the vectors u, 1, U and R are
the nodal displacements, velocities, accelerations and generalized loads,
respectively. The structure matrices are formed by direct addition

of the element matrices; for example
K=2K)
m

where Km is the stiffness matrix of the m'th element. Although Km
is formally of the same order as K, only those terms in Km which pertain
to the element degrees of freedom are nonzero, The addition of the
element matrices can therefore bhe performed by using the e¢lement matrices
in compact form together with identification arrays which relate element
to structure degrees of freedom. The algorithm used in the program is
described in Section 3.3.

In the program the structure stiffness matrix and a diagonal mass
matrix are assembled. Therefore, a lumped mass analysis is assumed,
where the structure mass is the sum of the individual element mass

matrices plus additional concentrated masses which are specified at

selected degrees of freedom. The damping is assumed to be proportional
and is snpecified in form of amodaldamping factor . The assumptions
used in lumped mass analyses and in the use of proportional damping have

been discussed at various occasions (9] [11] [17] [33].

2.2 Boundary Conditions

If a displacement component is zero, the corresponding equation
is not retained in the structure equilibrium equations, Eq. (1), and
the corresponding element stiffness and mass terms are disregarded.
If a non-zero displacement is to be specified at a degree of freedom i,

say ui = X, the equation

ku, =kx (3)
i

is added into Eq. (1), where k >> kii' Therefore, the solution of
Eq. (1) must give uU; = x. Physically, this can be interpreted as
adding at the degree of freedom "i" 8 spring of large stiffness k and
specifying a load which, because of the relatively flexible structure

at this degree of freedom, produces the required displacement x.

T B Ty T N v e o 72 gty T e

W s s e o e

—

- —————_———

AT v A

P e ——— 2 -

S SN

3. PROGRAM ORGANIZATION FOR CALCULATION OF THE

STRUCTURE STIFFNESS MATRIX AND MASS MATRIX

The calculation of the structure stiffness matrix and massmatrix is
accomplished in three distinct phases:
1, The nodal point input data is read and generated by the program.

In this phase the equation numbers for the active degrees of

freedom at each nodal point are established.

2. The element stiffness and mass matrices are calculated together

with their connection arrays; the arrays are stored in sequence on
tape (or other low-speed storage).
3. The structure stiffness matrix and mass matrix are formed by

addition of the element matrices and stored in block form on tape,

It need be noted that these basic steps are indenendent of the
element type used and are the same for either a static or dynamic

analysis.

3.1 Nodal Point Input Data and Degrees of Freedom

The capacity of the program is controlled by the number of nodal
points of the structural system. For each nodal point six boundary
condition codes (stored in the array 1ID), three coordinates (stored
in the arrays X,Y,Z) and the nodal point temperatures (stored in the array
T) are required (generation capability is provided). All nodal point data
is retained in high speed storage during the formation of the element
stiffness and mass matrices. Since the required high speed storage
for the element subroutines is relatively small, the minimum required

storage for a given problem is a little larger than ten times the

number of nodal points in the system.

It need be noted that the user should allow only those degrees
of freedom which are compatible with the elements connected to a nodal
noint. The program always deals with six possible degrees of freedom
at each nodal point, and all non-active degrees of freedom should be
deleted, so as to decrease the order of the structure matrices. Speci-

fically, a 1" in the 1D array denotes that no equation shall be associ-

ated with the degree of freedom, whereas a 'O indicates that this is

an active degree of freedom. Figure 1 shows for the simple truss

AR LES . A

structure the ID array as it was read and/or generated by the program.

Once the complete ID and X,Y,Z arrays have been obtained, equation ;
g
numbers are associated with all active degrees of freedom, i.,e., the .
3
zeroes in the ID array are replaced by corresponding equation numbers, i
and each one is replaced by a zero, as shown in Fig. 2 for the simple /
5
truss example. 1
3.2 Element Mass and Stiffness Calculations ‘

With the coordinates of all nodal points known and the equation

numbers of the degrees of freedom having been established, the stiff-

R 2 o

ness, mass and stress-displacement transformation matrices for each

structural element in the system are calculated. As pointed out

ean i~ i —

earlier, little additional high-speed storage is required for this

phase since these matrices are formed and placed on tape storage at

s e wmAme A

the same time as the element properties are read. Together with the
matrices pertaining to the element, the corresponding element connec-

tion array, vector IM, is written on tape. The vector LM is established

o (A v e

e pe e

b . - pTEP— e~ o e

o mranen ey

< . ST L s v s

TRUSS ELEMENT
IN FIGURE 3

NODAL POINT LAYOUT OF TRUSS

1 2 3 4 5 6 =-—
DEGREES

1 1 1 1 1 1 1 OF FREEDOM
2 1 1 1 1 1 1
3 1 0 0 1 1 1
ID = 4 1 0 0 1 1 1
5 1 0 0 1 1 1
6 1 0 0 1 1 1
7 L} 0 0 1 1 1
NODAl POINT
NUMBERS

FIGURE 1: NODAL POINT LAYOUT OF TRUSS-EXAMPLE
AND ID-ARRAY AS READ AND/OR
GENERATED

)

(w)

I}
© O O O © o o
© N W =~ O O
o o b OO
©C O © O ©o o o
o O O © © o o
©C O O ©o © o o©o

FIGURE 2: ID ARRAY OF TRUSS-EXAMPLE AFTER
ALLOCATION OF EQUATION NUMBERS TO
ACTIVE DEGREES OF FREEDOM

NODAL POINTS

FIGURE 3: CONNECTION ARRAY (VECTOR LM) FOR A
TYPICAL ELEMENT OF THE TRUSS-EXAMPLE

10

o e carm o

o s

from the ID matrix and the specified structure nodal points pertaining
to the element. The connection array for a typical element of the
truss element is shown in Fig. 3.

The element matrices are calculated in groups, i.e., always all
elements in one group together, thus calling the corresponding element

subroutine only once for each element group. After all element matrices

have been established, the ID and X,Y,Z arrays are not needed any more,

and the corresponding storage area is used_for the formation of the

g

structure matrices and later for the solution of the equations o £

equilibrium,.
e o ———

3.3 Formation of Structure Stiffness and Mass

The stiffness matrix and mass matrix of the structure are formed
in blocks, as shown in Fig. 4 for the truss-example. The number of

equations per block depends on the available high speed storage and

is calculated in the program as indicated in Fig. 5. It is noted

that on reasonable size computers very large systems can be analyzed
for static and dynamic response. With the number of equations per
block known, the stiffness and mass matrix are assembled two blocks at
a time by direct addition of the element matrices. In this process

it is necessary to pass through the element matrices which are stored

————

on tape. In order to minimize tape reading, in each pass_element Y
'n order to M T= Y€ as

i e 1A 8 Y B

matrices which pertain to_the next several blocks are written on
.: sd Rr WA i plan Basld .

1.
another tape. This way the tape reading necessary for the formation
PR T B e T S o e 4 2L i e

PR it

qg_gheSemblockS"is-reduced»signiiicantlyv—
A flow diagram of the program organization for the calculation of

the structure stiffness matrix and mass matrix is shown in Fig. 6.

11

3dVvL NO XI¥LYW SSVN
ANV XIdLYW SSINJJILS 4O 39vi0ILS

SIOIHLYN RNLONYLS 40 ADVHOLS D014

XI4 LYW XIYLIVI
SSYN SSANAJ ILS
0
0 B]
X & x
X &ﬂv XX
X X X X
X X X X X
X 00X0X
X X00XKX
X 00XXX
X X X X X X
X 00Xo0X
X X00XX
[- -
INTWITI OMIZNON = X
INTWAT O¥IZ = 0

¥ 20749

€ %0078

2 %0078

1 %0078

XIULVN
SSWIN

-1
J

Lo o T T -

‘7 33N914

SHOIYLYN RUALOMHLS TVIALOV

XIHLVN SSANJAILS

12

32078 VNI SNOILYADI 340 ¥33aNNN
30 NOLLYINDAVD ONIMOHS LYVHOMOI4 S 33n91d

NOILN'IOS HOd FZIS 32018 FHL NOILNIOS Y04 FZIS %0019
st (9 av 40 WAMININ am st (7)) anv 40 WIHININ
. @ @ O *@ NOLLNTTOS ¥od IZIS J0Td
ﬁ ame st () anv @ 40 MANININ
NOILNTOS NOILWVMALI 2SVD 3078 ANO
ASVHd NOILVMDAINI AWIL HOd dOV4SANS ¥0d TIAISSOd
T191SS0d FZIS NOOTHE WIRIXVA FLVINIIVD 3ZIS %2078 WAWIXVA ILVINDIVD)
(9)- %J)
4 oN S SNOILWNdI
XIYLVA SSINAAILS 4O NOILISOJMODEA HOJ TIE1SS0d SI NOILNIOS HOVAS INVNIWMILIA 41 ILVINOIVO 40 NOILNIOS ¥0d TIEISS0d

JZ1IS 30018 RNKIXWVN ALVINYIVD

® ©® ®
i 1 1

i NOILOW 40 SNOILWN®d3 40 NOILVHDILNI 1odWIid NC@ K = ¢ 3 SIdVHS FAOW ANV STIONANdIUA JO NOILVINDIVD ¥ =NF :NOILIIOS JDILVLS

ﬁ 4 1

NOILVAHOd SSVH ONV SSANJJILS FUNLONYULS HOd JIHISS0d FZIS NIOTH WINIXVH ILVINDIVO

ITE1SS0d FZIS XO018 WINIXVA ILVINIIVD ‘dY00 NI aaImyod I NVO SNOILVNdE FHL LVHL SMOHS @ 41

UV

SNOILVDOT ADVHOLS QIIdS HDIH JO HIMWAN TIEVIIVAV DNISN

Hh
i

e

13

START

1

READ AND GENERATE
NODAL POINT DATA

AND

ESTABLISH EQUATION
NUMBERS

$

Y

" -

CALL OF ELEMENT
SUBROUTINES

Y

STRESS-DISPLACEMENT

LOW SPEED
STORAGE FILES

TRANSFORMATION MATRICES

MATRICES 4

CONNECT]

FORMATION OF

STRUCTURE STIFFNESS
MATRIX, MASS MATRIX
AND LOAD VECTORS

CONTINUE TO STATIC
OR DYNAMIC ANALYSIS

FIGURE 6: FLOWCHART FOR CALCULATION OF

STRUCTURE STIFFNESS MATRIX AND MASS

MATRIX

14

I Yy s G g e <

IR S ey e

With the matrices stored in block form on tape either a static or a

dynamic analysis can now be carried out,

15

4. THE ELEMENT LIBRARY

The clement library of SAP IV consists of eight different element
types. These elements can be used in either a static or dynamic

analysis. They are shown in Fig. 7 and are briefly described below.

4.1 Three Dimensional Truss Element

The derivation of the truss element stiffness is given in Refs.
{231 [29]. The element can be subjected to a uniform temperature

change.

4.2 Three-Dimensional Beam Element

The beam element included in the program considers torsion,
bending about two axes, axial and shearing deformations. The element
is prismatic. The development of its stiffness properties is standard
and is given in Ref. [23]. 1Inertia loading in three directions and
specified fixed-end-forces form the element load cases. Forces (axial
and shear) and moments (bending and torsion) are calculated in the

beam local co-ordinate system.

———— e

‘ - A typical beam element is shown in Fig. 7b. A plane which defines

the principal bending axis of the beam is specified by the plane i, j, k. y

—
Only the geometry of nodal point k is needed; therefore, no additional

degrees of freedom for nodal point k are used in the computer program,
A unique option of the beam member is that the ends of the beam can
be geometrically constrained to a master node. Slave degrees of
freedom at the end of the beam are eliminated from the formulation
and replaced by the transformed degrees of freedom of the master node

[18] [29]. This technique reduces the total number of joint equilibrium

16

b4
j
,/
»Yy

"/ b, THREE-DIMENSIONAL
a.TRUSS ELEMENT BEAM ELEMENT

= A

¢.PLANE STRESS,PLANE STRAIN AND AXISYMMETRIC ELEMENTS

d. THREE-DIMENSIONAL e. VARIABLE -NUMBER - NODES

SOLID THICK SHELL AND
THREE-DIMENSIONAL ELEMENT

TANGENT
9. PIPE ELEMENT

FIGURE 7: ELEMENT LIBRARY OF SAP IV

17

equations in the system (while possibly increasing the bandwidth) and
greatly reduces the possibility of numerical sensitivities in many
types of structures, Also, the method can be used to specify rigid

floor diaphragms in building analysis,

4.3 Plane Stress, Plane Strain and Axisymmetric Elements

A plane stress quadrilateral (or triangular) element with ortho-

tropic material properties is available. Each plane stress element

may be of different thickness and may be located in an arbitrary plane
with respect to the three-dimensional coordinate system, The plane
strain and axisymmetric elements are restricted to the y-z plane.
Gravity, inertia and temperature loadings may be considered. Stresses
may be computed at the center of the element and at the center of each
side. The element is based on an isoparametric formulation {19) [34].
Incompatible displacement modes can be included in order to improve

the bending properties of the element [26] [29] [32].

4.4 Three-Dimensional Solid Element

A general eight nodal point "brick" element, with three transla-
tional degrees of freedom pernodal point can be used, Fig, 7d. Isotro-
pic material properties are assumed and element loading consists of
temperature, surface pressure and inertia loads in three directions.
Stresses (six components) may be computed at the center of the element
and at the center of each face. The element employs incompatible modes,

which can be very effective if rectangular elements are used [26].

4.5 Variable-Number-Nodes Thick Shell and Three-Dimensional Element

A general three-dimensional isoparametric or subparametric element

which may have from 8 to 21 nodes can be used for three~-dimensional

18

?" }__}

S
or thick shell analysis, Fig. 7e [7] [8]. General orthotropic
material properties can be assigned to the element. The loading may
consist of applied surface pressure, hydrostatic loads, inertia loads

in three directions, and thermal loads. Six global stresses are

output at up to seven locations within an element.

4.6 Thin Plate and Shell Element

The thin shell element available in the program is a quadrilateral
of arbitrary geometry formed from four compatible triangles, The
bending and plane stress properties of the element are described in
references [12] [14]. The shell element uses the constant strain
triangle and the LCCT9 element to represent the membrane and bending
behavior, respectively. The central node is located at the average of
the coordinates of the four corner nodes. The element has six interior
degrees of freedom which are eliminated at the element level prior
to assembly; therefore, the resulting quadrilateral element has twenty-
four degrees of freedom, i.e., six degrees of freedom per node in the
global coordinate system.

In the analysis of flat plates the stiffness associated with the
rotation normal to the shell surface is not defined; therefore, the
rotation normal degree of freedom must not be included in the analysis,
For curved shells, the normal rotation need be included as an extra

degree of freedom. In case the curvature is very small, the degree

19

¢-2

of freedom should be restrained by the addition of a "Boundary Element"
with a small normal rotational stiffness, say of less or about 109 of

the element bending stiffness [13] [34].

4.7 Boundary Element

The boundary element, shown in Fig. 7f, can be used for the

following:

1. in the idealization of an external elastic support at a node;
2. in the idealization of an inclined roller support ;

3. to specify a displacement, or

4. to eliminate the numerical difficulty associated with the

'sixth’ degree of freedom in the analysis of nearly flat
shells,
The ¢lement is one-dimensional with an axial or torsional stiffness.
The element stiffness coefficients are added directly to the total

stiffness matrix (see Section 2.,2).

4.8 Pipe Element

The pipe element (Fig. 7g) can represent a straight segment
(tangent) or a circularly curved segment (bend); both elements require
a uniform section and uniform material properties. Elements can be
directed arbitrarily in space. The member stiffness matrices account

for bending, torsional, axial and shearing deformations. In addition,

the effect of internal pressure on the stiffness of curved pipe elements

is considered.

The types of structure loads contributed by the pipe elements

include gravity loading in the global directions, and loads due to thermal

distortionsanddeformationsinducedbyinternalpressure. Forces and moments

20

acting at the member ends (i,j) and at the center of each bend are
calculated in coordinate systems aligned with the member's cross
section.

The pipe element stiffness matrix is formed by first evaluating
the flexibility matrix corresponding to the six degrees of freedom at
end j as given by Poley [22]. With the corresponding stiffness matrix,
the equilibrium transformations outlined by Hall et al [16] are used
to form the complete element stiffness matrix. Distortions due to
element loads are premultiplied by the stiffness matrix to compute

restrained nodal forces due to thermal, pressure or gravity loads.

21

S. STATIC ANALYSIS

A static analysis involves the solution of the equilibrium
equations

Ku =R 4)

followed by the calculation of element stresses.

5.1 Solution of Equilibrium Equations

The load vectors R have been assembled at the same time as the
structure stiffness matrix and mass matrix were formed. The solution
of the equations is obtained using the large capacity linear equation
solver SESOL [31], This subroutine uses Gauss elimination on the
positive-definite symmetrical system of equations. The algorithm
performs a minimum number of operations; i.e. there are no operations
with zero elements. 1In the program, the LTDL decomposition of K is

used, hence Eq. (4) can be written as

L' v=R (5)

and

vV = DLu (6)

where the solution for v in Eq. (5) is obtained by a reduction of the
load vectors; the displacement vectors U are then calculated by a
back-substitution.

In the solution, the load vectors are reduced at the same time as
K is decomposed. In all operations it is necessary to have at any one

time the required matrix elements in high-speed storage. 1In the

22

reduction, two blocks are in high speed storage (as was also the case
in the forration of the stiffness matrix and mass matrix),i.e., the
"leading" block, which finally stores the elements of L and D, and in
succession those blocks which are affected by the decomposition of the

"leading" block. Table 1 gives some typical solution times.

5.2 Evaluation of Element Stresses

After the nodal point displacements have been evaluated, sequen-
tually the element stress-displacement matrices are read from low

speed storage and the element stresses are calculated.

23

W e e

R A T P VSR U YW SIS

"uoYINoS STyl Joy adendue[suUTYOBW UL POPOD USSQ SBY XTJIEBW

SSaUFJT}S 8yl Jo uoflezrioloey syl ur dooy - QgQ Iauur a8yl

+
009L Oad e S02 45474
0099 Oad 0921 88¢% 9692
0099 2dO *mwha [42"] 9¢08
ods

agsn HOSSIO0Hd HLAIMAN VL SNOILLVN®A

HALAdWOD TVHINID dTVH JO ¥IFNIN
T0SdS ONISN SNOILVN®I 40 NOIINTOS T 319VL

24

6. CALCULATION OF FREQUENCIES AND MODE SHAPES

The dynamic analysis of a structural system using mode super-
position requires as the first step the solution of the generalized

eigenvalue problem

2
Ké=w M¢ 7

where w and ¢ are free vibration frequency and mode shape, respectively.
As was described in Section 3.3 the program stores the stiffness and

mass matrix in blocks on tape, Fig. 4. The mass matrix is diagonal

with partly zero diagonal elements. The program assumes that only

the lowest p eigenvalues and corresponding eigenvectors are needed.

The solution of Eq. (7) can therefore be written as

~ Ké = Ma0° @)

2
where () is a diagonal matrix with the p smallest eigenvalues,
. f? . 2 . .
i.e. = dlag(wi), and ¢ stores the corresponding M-orthonormalized

eigenvectors ®1, ¢ ¢ . Two different solution procedures are

PLERE
used in the program, a determinant search technique or a subspace
jteration solution. The determinant search solution is carried out
when the stiffness matrix can be contained in high-speed storage in
one block. Therefore, for systems of large order and bandwidth the
subspace iteration method is used. Both solution techniques solve

the generalized eigenvalue problem directly without a transformation

to the standard form [3].

25

6.1 The Determinant Search Solution

The determinant search technique is best suited for the analysis
of large systems in which K and M have small bandwidths [4] . Basically,
the solution algorithm combines triangular factorization and vector
inverse iteration in an optimum manner to calculate the required
eigenvalues and eigenvectors; these are obtained in sequence starting
from the least dominant eigenpair uﬁ ’ ¢1 . 'An efficient accelerated
secant iteration procedure which operates on the characteristic

polynomial

p(u?) = det (X - u?M) 9)

is used to obtain a shift near the next unknown eigenvalue. The eigen-
value separation theorem (Sturm sequence property) is used in this
iteration. Each determinant evaluation requires a triangular factoriza-
tion of the matrix K - u?M. Once a shift near the unknown eigenvalue
has been obtained, inverse iteration is used to calculate the eigen-
vector; the eigenvalue is obtained by adding the Rayleigh quotient

correction to the shift value. Table 2 shows typical solution times,

6.2 The Subspace Iteration Solution

When the system is too large to be completely contained in high
speed storage, i.e. more blocks thanone are used, the subspace iteration
solution is carried out, The iteration can be interpreted as a re-
peated application of the Ritz method [5] /9], in which the computed
eigenvectors from one step are used as the trial basis vectors for the

next iteration until convergence to the required p eigenvalues and

26

8¢ 009L A2 ov Ss9 c9¢ YANIVINOO

0¢c 0099 240 L (A obe DNICIINg

WILSAS

11 0099 24O L 21 99¢ ONIdId

mwdd

ov 00%9 2d0 € o€ L62 INVId

ods aiasn d SIdVHS HGON OGNV HIAIM u YyI@O WA LSAS
40Ss3d0dd YIINdN00 ‘NOTYd "a,dT aNnvg JATvVH W3LSAS

TVHINID JO YIENWIN WNNIXVA

QOHLIW HOUVAS LNVNIWHILAA DNISA
SAJdVHS FAOW GNV STIONINd®IYS 40 NOILVINOTIVO ¢ J1dvlL

!_F_h P RRRRER R A SRR SS S S R B A il il I, e

o ot B el

27

eigenvectors is obtained.

The solution is carried out by iterating simultaneously with q '

linearly independent vectors, where q > p . In the k'th iteration
the vectors span the g-dimensional subspace 8k and 'best’' eigenvalue
and eigenvector approximations are calculated; i.e. when the vectors
span the p-dimensional least dominant subspace, the required eigen-
values and eigenvectors are obtained.

Let Vo store the starting vectors, then the k'th iteration is
described as follows:

Solve for vectors Vk which span Ck
KV =MV (10)

Calculate the projections of K and M onto Ck (i.e. the generalized

stiffness matrix and mass matrix corresponding to Bk)

T —_
Kk Vk KVk (11)

~
]

MV (12)

|

Solve for the eigensystem of Kk and Mk

2
Ke Qo = M 13)
and calculate the k'th improved approximation to the eigenvectors

Vk = Vk Qk (14)

28

Provided that the starting subspace is not orthogonal to any of the
required eigenvectors, the iteration converges to the desired result,
i.e.ﬂi-*ﬂzandvk*Qask-0¢>.

The number of vectors q used in the iteration is taken greater
than the desired number of eigenvectors in order to accelerate the
convergence of the process. The number of iterations required to
achieve satisfactory convergence depends, of course, on the quality of
the starting vectors VO. Unless requested otherwise (see Section 6.3),
the program generates q starting vectors where q = min(2p, p +8), which
has proven to be effective in general applications, At conver-
gence a Sturm sequence check can be requested to verify that the lowest
p eigenvalues have been found.

Table 3 lists a few typical solution times using the program generated

starting vectors.

6.3 Dynamic Optimization

The solution of the eigenvalue problem may be required when a
good estimate of the required eigensystem is already known, such as
in dynamic optimization. 1In this case the subspace iteration method
is ideally suited for solution. The number of iteration vectors q
and the vectors Vo together with the maximum number of iterations can
in this case be specified by the user. Also, in case the number of
eigenvalues and vectors required is increased, the already calculated
eigenvectors can be specified as part of the starting iteration vectors

in order to accelerate convergence.

29

P

TN A

091 00F9 OaO 14 961 89% ‘oa1d
NIG-¢
NOILVANNOJ
068 0099 OdO 1 4 8€1 bLIT HLIM ‘5Qid
WNILSKS
444 0099 Dad 8¢ (A 996 ONIdId
ANV A
8 »
1454 00%9 J £ o¢ L62 ANV
ods agsn d SIdVHS HAON ANV HIAIM u yI@o
HOSSIDoNd HILNdNOD ‘NOTHA d,da aONVH ATVH NILSAS NILSAS
TWINID 40 YIIWNN NINIXVYN
GOHLIN NOILWALI ADvdSdnsS OHNISn
SIdVHS FWON ANV SAIONANdIHA 40 NOILVINDIVD € J19vL

iy wRkeen s

30

[P

7. DYNAMIC ANALYSES

In dynamic response analysis the solution of the equations
MU +C0u + Ku = R(t) (15)

is required, where R(t) can be a vector of arbitrary time varying loads
or of effective loads which result from ground motion. Specifically,
in the case of ground motion, if it is assumed that the structure is
uniformly subjected to the ground acceleration ﬁg[Q], the equilibrium

equations considered are

MU +Cu +Ku =-Mu (16)

where ur is the relative displacement of the structure with respect
to the ground, i.e. u_=u - u .
r g
The program can carry out a history analysis for solution of
Eqs. (15) or (16), or a response spectrum analysis for solution of
Eq. (18). The history analysis can be carried out using mode super-
position or direct integration. The response spectrum analysis

necessitates, of course, first the solution of the required eigen-

system.

7.1 Response History Analysis by Mode Superposition

In the mode superposition analysis, it is assumed that the
structural response can be described adquately by the p lowest
vibration modes, where p << n. Using the fransformation u = X,
where the columns in ¢ are the p M-orthonormalized eigenvectors,

Eq. (15) can be written as

5('+A)'(+(?X=QTR an

31

where

b = disg(@w E); £ = diag(wzi) (18)

In Eq. (18) it is assumed that the damping matrix C satisfies the

modal orthogonality condition
¢ . Co_ =0 G # 3) (19)

Equation (17) therefore represents p uncoupled second order differen-
tial equations. These are solved in the program using the Wilson
§-method, which is an unconditionally stable step-by~step integration
scheme [6]. The same time step is used in the integration of all
equations to simplify the calculation of stress components at pre-
selected times.

In the case of prescribed ground motion uI_= $X and in Eq. (17)
the right hand side is given by —¢Thdﬁg, where the ground acceleration
is considered as the sum of the components in the x, y and z direc-

tions as described in Section 7.3.

7.2 Response History Analysis by Direct Integration

The solution of the equations of motion, Eqs. (15) and (16), can
be obtained by direct integration [6]. 1In the program the Wilson
g~-method is used, which is unconditionally stable. The algorithm
employed is summarized in Table_4. It need be noted that Rayleigh
damping is assumed, i.e. C = oM + PK (11]. This form of damping is
easily taken account of in the analysis, because no storage and no

multiplications for a damping matrix are required.

32

- s

TABLE 4: STEP-BY-STEP DIRECT INTEGRATION ALGORITHM

Initial Calculations

1. Calculate the following constants (Assume C = oM+ BK) .

8 =1.4, = ppt by = Pa,

a, = (6+3an) /(" +3pD) ag = 3b /7 - 6/(19)
b, = o~ Ba_ ag = 2b, - 6/(70)

a, = 6/'r2 + 3b0/T a, = b17/2 +1-3/9
a, = 6/T + 2bo ag = At/2

a, =2 + Tbo/z ag = at?/3

a, = 6/[8@g1+1)] ay, =3

2. Form effective stiffness matrix K* = K + aOM.
*
3. Triangularize K

For Each Time Increment

*
1. Form effective load vector Rt

* L] e
Rt = Rt-fe(R - Rt) + M[alu +au +a,u,l

t+At t 2t 3t

*
2. Solve for effective displacement vector ut

K* * R*
Y T %
3 Calculate new acceleration, velocity and displacement vectors,
. _ * N R - .
Uprat - %Y T BsYy T B6Ye T A%t

|
c
-+
O
”~~
=5
+
:-
g

Ypeat Ut 8 Vt+at t

= ¥ +
Ut +at t t ot T 210Yt+at

4, Calculate element stresses if desired.

33

7.3 Response Spectrum Analysis

In this analysis the ground acceleration vector in Eq. (16) is

written as

=u + u + u (20)

where U , U and & are the ground accelerations in the x, y and
gx gy gz
z directions, respectively. The equation for the response in the

r'th mode is therefore

X +2E « x +(3x =r +r +r (21)
r rrr r°r rx ry rz

where X is the r'th element in X and

r =-9¢" M i r =-MTMH i r = ~0" MU

22)
rx r gx ry r gy rz r gz

Using the definition of the spectral displacement [10), the maximum
absolute modal displacements of the structure subjected to an accelera-

tion into the x direction are

T

u(max) = ¢ |®
r

MI |s (a) (23)
rx r X X r

where Sx(u}) is the spectral displacement into the x direction
corresponding to the frequency u% and Ix is a null vector except
that those elements are equal to one which correspond to the x-
translational degrees of freedom. Similarly, for the responses due

to a ground acceleration into the y and z-directions

(max)
u
ry

T (max) T
=9) . = v/)
rla’rMIyI Sy(“r) ! urz ¢rl rMIzl Sz(u'r) (24)

34

o

owe—

AR

and the total maximum response in the r'th mode is assumed to be

u(max) - u(max) . u(max) . u(max)

r rx ry rz @5

Program SAP IV calculates the maximum responses in each of the p
lowest modes, where the spectra (displacements or accelerations) into
the x, y and z-directions are assumed to be proportional to each other.
The total response for displacements and stress resultants is calculated
as the square root of the sum of the squares of the modal maximum

responses [10] [36].

7.4 Restart Capability in Mode Superposition Analysis

The most expensive phase in mode superposition analysis is
usually the calculation of frequencies and mode shapes. However, once
the required eigensystem has been solved for, it can be used to analyze
the structure for different loading conditions. Also, in a design
process the history or spectrum analysis for the same loading can be
carried out economically a few times, for example, to study the stress
history in different parts of the structure.

In the program, at completion of the eigensystem solution, all
variables required for a response history or response spectrum analysis
together with the frequencies and mode shapes are written on low speed
storage. The program execution may be stopped at this stage and the
information on low speed storage be copied to a physical tape. Later,
this tape would be copied back to low speed storage before starting a
response analysis. If, after a number of response analyses using the
eigensystem on the tape, it is decided that more frequencies and mode

shapes need be calculated, the information on the tape can be used to

35

reduce the cost of the new eigensystem solution as described in

Section 6.3.

7.5 Mode Superposition Versus Direct Integration

For an effective response history analysis the user must decide
appropriately whether to use mode superposition or direct integration.
It should be realized that the direct integration is equivalent to a
mode superposition analysis in which all the eigenvalues and vectors
have been calculated and the uncoupled equations in Eg. (17) with p =n
are integrated with a common time step At. Naturally, the integration
can only be accurate for those modes for which At is smaller than a
certain fraction of the period T. Using the Wilson 8-algorithm the
integration errors effectively "filter" the high mode response, for
which At/T is large, out of the solution, This filtering is due to
the amplitude decay observed in the numerical solution when At/T is
large. As an example, Fig. 8 shows the amplitude decay for the initial
value problem indicated [6].

The effective filtering of the high frequency response from the
solution may be beneficial. Integration accuracy cannot be obtained
in the response of the modes for which At/T is large and the filtering
process allows one to obtain a total system solution in which the
low mode response is accurately observed.

It is therefore noted that the direct integration is quite
equivalent to a mode superposition analysis, in which only the lowest
modes of the system, but a sufficient number to take proper account of
the applied loading, are considered. The exact number of modes effec~
tively included in the analysis depends on the time step size At and

the distribution of the periods,

36

/

AD

4 T .:.

T~

230

19.0

50

o o o
= r~)

(QV %) AvO3a 3ANLINdAY 39VIN3OYH3d

o
o

1.0

0.22

o.18

0.4

0.10

0.06

0.02

At/T

FIGURE 8: AMPLITUDE DECAY WILSON 8-METHOD

37

The advantages of mode superposition are essentially that
frequencies and mode shapes are obtained and that a variety of
response history and response spectrum analyses can be carried out with
relatively small additional cost. Also, if the structure is slightly
changed or more eigenvalues and vectors are required, i.e., the
frequency domain to be considered shall be extended, the eigensystem
solved for already can be used to reduce the cost of the new eigen-
system solution (see Section 7.4).

The direct step-by-step integration, however, is more effective,
when many modes need be included in the analysis and the response is
required over relatively few time steps, such as in shock problems.
It should be noted that the tape reading required in the direct inte-
gration analysis of large out-of-core systems can be costly because
in the solution for the response in each time step the triangularized

effective stiffness matrix must be taken into high speed storage.

38

e e aee

— —.

E g

R

R

"

8. DATA CHECK RUN

In the analysis of large structures it is important to be able to
check the data read and generated by the program. For this purpose an
option is given in which the program simply reads and generates all
data, prints it and also writes the full data on low speed storage.

At completion of data read and generation the information on low speed
storage can be copied to a physical tape. This tape may then be used

to plot the finite element mesh.

39

9. INSTALLATION OF SAP IV ON A SYSTEM OTHER THAN A CDC COMPUTER

SAP IV is written using FORTRAN IV and has been developed on a
CDC computer. The program has also been installed with relatively
little effort on IBM and UNIVAC machines.

The program or parts of it can essentially be used on any reasonably
sized computer. SAP IV consists of about 14000 cards, and is organized in
a standard Fortran overlay structure to reduce the required high speed
storage for program execution.The main overlay essentially consists of
the main program. The secondary overlays are, respectively, the element
routines, the equation solver, the eigenvalue routines, the mode super-
position history analysis program, the spectrum analysis program and the
direct integration routine. Using only specific overlays efficient
special purpose programs are obtained. For example, using the main
overlay plus the secondary overlays of the pipe element, the eigenvalue
routines and the response history analysis a special purpose pipe
response history analysis program by mode superposition is obtained, On
the CDC 6400 of the University of California, Berkeley, the complete
program with 1200010 high speed storage locations allocated for
solution processing, i.e. the blank common block A has a length of 12000,
requires a field length of abouf 1140008 for execution.

On installation of SAP IV on other machines than the CDC series, it
must be observed that arithmetic calculations should be performed using
about 14 digit words. This means that, for example, on IBM and UNIVAC
machines double precision need be used. The calculations to be performed
in double precision are in static and dynamic analysis the formation of

element stiffness matrices, the formation of the structure stiffness

40

et g Y 5

s

matrix and main steps in the solution of the equations of motion, namely,
the solution of Ku = R, the solution of the generalized eigenvalue problem
K¢ = w2M¢ and in the direct integration the solution of the effective
displacements u: (see Table 4), These calculations need primarily be
performed in double precision because of truncation errors occurring when
too few digits are used, which can cause large errors in the solution and
numerical instabilities [20] [25].

With regard to the use of back-up storage, to keep the program
izfﬁgmvindependent sequential accessing is used throughout. Therefore,
since no advantage is taken of efficient buffering and direct access

techniques, it need be noted that the use of secondary storage can

be much improved when tailored to a specific system.

41

10. OONCLUDING REMARKS

The objective in this part of the report was to present a brief
description of the computer program SAP IV, The program is a general
analysis tool for the linear static and dynamic analysis of complex
structures. While efficient in the solution process, however, it should
be mentioned that pre- and post processing options have to a large extent
not been developed; mainly, because the user is restricted to the
particular peripheral equipment available to him,

With regard to the future of the program, various important
improvements could be envisaged. The program does not have as yet
substructure capabilities. More effective use of back-up storage could
be achieved. The element routines could be further improved. A most
important aspect are general error control procedures. In this area a
significant amount of research is still required. Considering additional
analysis capabilities, such as the use of consistent mass matrices, the
possibility of including geometric and material nonlinearities, etc., it
may be mentioned that a nonlinear static and dynamic analysis program

is presently being developed [8].

42

- PART B -

SAMPLE ANALYSES

SAMPLE ANALYSES

In this part of the report brief problem descriptions for a set of
standard data cases available with program SAP IV are given. Naturally,
the few sample analyses can only demonstrate to a small degree the
capabilities of the program. 1In general, detailed problem descriptions
can be found in the references from which the sample analyses have

been taken.

1, Static Analysis of Pipe Network

The pipe network shown in Fig. 9 corresponds to a sample problem
solution presented in the User's Manual for the "ADLPIPE" piping
analysis computer code [35]. The purpose of this analysis is to pre-
dict the static response of the system under the combined effects of:

(1) concentrated loads

(2) wvertical (y-direction) gravity loads

(3) uniform temperature increase

(4) non-zero displacements imposed at one support point

Table 5 compares the reactions printed in the SAP and ADLPIPE
solutions. The two solutions are in fair agreement; the SAP
results satisfy equilibrium to all six digits, appearing in the
printed output. In the table of applied loads, a total weight of
6284.03 lbs results from 950.686 inches of pipe weighing 6.61 1lbs

per inch.

2. Static Shell Analysis

The clamped spherical shell shown in Fig. 10 is analyzed for
stresses produced by a uniform pressure applied on its outside surface.
The SAP model represents a five degree wedge of the shell with eighteen

43

1000 Ibs
30001Ibs

i5in
SPRING
1}#‘5 Sm 10%1bs/in " \r

ROD HANGER
K=1031bs/In \ 4

105 in] 1000 Ibs ,CONSTANT

FORCE HANGER

120in
0"11:2
0.2in
0.3In 200 Ibs
DEAD WEIGHT i5in
NON-ZERO TRANSLATIONS
IMPOSED AT NODE 12

FIGURE 9: SAP MODEL OF PIPE NETWORK GIVEN
IN ADLPIPE MANUAL

44

TABLE 5 FORCE EQUILIBRIUM SUMMARY
(SAP ANALYSIS OF ADLPIPE EXAMPLE 1)

A, REACTIONS
SAP ADLPIPE
NODE
FX FY FZ FX FY FZ
9 5643.51 . . 5659. .
11 . -4044.59 . . -4052.
12 2350.08 4023.01 | -4960,70 2361, 4026, -4966.
13 [F10993.59 4505,61 2960.70 |{-11021. 4509, 2966,
| -
TOTAL} -3000,00 4484 .03 | -2000,00 -3001, 4483, -2000,

APPLIED LOADS

LOADING TYPE

DIRECTTION

X Y Z

CONCENTRATED :

at node 3 1000.00

at node 4 . -200.00

at node 8 3000, 1000.00 2000,
DISTRIBUTED
WEIGHT: -6284.03

=

TOTAL 3000, -4484.03 2000,

45

SURFACE STRESSES , Ibs/in®

h=2.36in
v=0.2

4000 —

2000

O

———— A e el AA—r—-
L]

=284 Ibs/in®

-2000

-4000

-6000

(e) = EXTERIOR SURFACE
(i) = INTERIOR SURFACE

-8000 ¥—

FIGURE 10: DISTRIBUTION OF SURFACE STRESSES IN
A CLAMPED SPHERICAL SHELL UNDER

EXTERNAL PRESSURE

46

¥

thin shell elements along the thirty-nine degree meridian. The curves
drawn in Fig. 10 are plots of meridian (¢) and circumferential (6)
direction surface stresses predicted by the SAP program at the element
centroids.

The solution of this problem is given in the text by Timoshenko [271,
where the stress distribution of Fig. 10 may be found for comparison.
It should be noted that program SAP calculates membrane stresses (force
per unit area) and bending resultants (moment per unit length) from

which the surface stresses in the figure have been evaluated.

3. Frequency and Mode Shape Analysis of Plane Frame

The lowest three frequencies and corresponding mode shapes of the
plane frame shown in Fig. 11 are calculated. The results can be
compared with the solutions published in references [4] [5]). Note that
depending on the high speed storage available either a determinant
search or a subspace iteration solution may be performed. The three

lowest vibration periods of the frame are given in Table 6.

4, Response Snectrum Analysis of Pipe Network

A response spectrum analysis of the pipe assemblage shown in Fig. 12
is carried out, This is example 1 in the User's Manual for the "pIPDYN"
computer program [36]. Good correspondence between the SAP and PIPDYN
solutions is obtained. Table 7 compares local z-direction member end
moments calculated by the two programs. In the analysis the lowest
five modes are considered. Both, horizontal and vertical (proportional)

spectra are simultaneously specified.

47

9 AT
10

[77 7777 7777777777777 77777777777777777777777777
10 AT 20’

200

(a) ELEVATION OF FRAME
DATA : YOUNG'S MODULUS = 432000, MASS DENSITY =1.0
FOR ALL BEAMS AND COLUMNS A,=30,1,=1,=1,=10
UNITS: FT, KIPS

(b) BEAM ELEMENT DEFINITION
S,,S, AND S, = BEAM LOCAL AXES
1,,1, AND 1, =FLEXURAL INERTIA ABOUT S,,S,,AND S,

A| = AREA ASSOCIATED WITH S,

FIGURE 1I: SAP MODEL OF PLANE FRAME

48

TABLE 6 PERIODS OF PLANE FRAME
MODE PERIOD
NUMBER (SEC)
1 8.183
2 2.673
3 1,543

TABLE 7 COMPARISON OF MOMENT PREDICTIONS
(SAP ANALYSIS OF PIPDYN EXAMPLE 1)

MOMENT MZ (Kip in) IN ELEMENT LOCAL
COORDINATES (at element ends 1, see
ELEMENT Ref. 29 pp. 54)
NUMBER
SAP PIPDYN
1 376.9 377.0
2 30.67 30.68
3 152.9 152.9
4 100.6 100.6
S 83.27 83.27
6 46.17 46.19
7 1.081 1.082
8 21,59 21.81
9 7.052 7.038
10 7.537 7.571
11 160.3 160.4
12 78.07 78.09
13 26.08 25.80

49

FIGURE 12: SAP MODEL OF PIPDYN EXAMPLE 1,
RESPONSE SPECTRUM ANALYSIS

50

5. Mode Superposition Time History Response Analysis of Cantilever

The cantilever beam shown in Fig, 13 jig analyzed for the ground
acceleration shown in the same figure. The solution to this problem
is obtained independently using the '"'DRA2" computer code [21], Thig
program calculates the dynamic response by direct integration of the
(coupled) equations of motion using the Wilson 8-algorithm [6]. |

The response history of the beanm model is evaluated in SAP using
mode superposition including all eight flexural modes developed in the
cantilever; Table 8 lists the periods of these eight modes computed
by SAP. Figure 14 shows the variation of the transverse displacements
and of the fixed-end moment calculated by SAP. The DRA2 predictions
agree with the SAP results to 5 or more digits and, consequently, are

not shown for comparison.

6. Mode Superposition Time History Response Analysis of Cylindrical Tube

The response of the simply supported cylindrical tube shown in Fig. 15
for a suddenly applied load is calculated by mode superposition. Using sym-
metry one half of the tube is idealized as an assemblage of axisymmetric
elements with a total of 61 degrees of freedom. 1In the mode superposi-
tion analysisonly the lowest twenty modes are considered; some of the
vibration periods are listed in Table 9. Figure 15 shows a comparison
of the radial displacements calculated by the program with a Timoshenko-

Love solution [24].

51

1=10in*; A=100.0in2
E = 30x10°Ibs /In?
P =101b-sec?/in*

| 2 3 4 5 6 7 8 9
.Z' . 4 -0~
“Tg MR UQJ* DO RAGRET
CONCENTRATED MASS
11bsec?/ In

8 at 50" = 400"

(a) NODE AND BEAM NUMBER ASSIGNMENTS FOR THE
CANTILEVER MODEL

20f

— 1000 in/sec? — ——

10 2(\ >

TIME (sec)

ACCELERATION

(b) GROUND ACCELERATION APPLIED AT NODE 1

FIGURE 13: RESPONSE HISTORY ANALYSIS OF
CANTILEVER BEAM

52

G

o

TABLE 8 CANTILEVER BEAM ANALYSIS -
NATURAL PERIODS FOR THE EIGHT (LOWEST)
FLEXURAL MODES

MODE PERIOD
NUMBER (SEC)

525.79
85.368
30.965
16.059

9. 9006
6.8276
5.1865

W N 00 v s w N

4.,3777

TABLE 9 CYLINDRICAL TUBE ANALYSIS -
SOME NATURAL PERIODS

MODE PERIOD
NUMBER (SEC x 1073)
1 1.2788
5 0.62140
10 0.32983
15 0.17463
20 0.11497

53

TRANSVERSE DISPLACEMENT (IN.)

BENDING MOMENT (LBS -IN.)

100,000

— r—— e TR v W IR L A0t 1]

80,000 |—

60,000 |—

40,000 |—

20,000 |—

o

I N

2 4 6 8 o 12 14 16 18
TIME (SEC)

(a) TRANSVERSE DEFLECTIONS

60 E+7

50 —

40 |-

30 —

20 —

I I S N N

2 4 6 8 o 12 14 18 8
TIME (SEC)

(b) MOMENT AT NODE 1
(FIXED END OF CANTILEVER)

FIGURE 14: CANTILEVER RESPONSE

54

2 ——TIMOSHENKO -
LOVE P=1000 Ibs/in
EQUATIONS T
0 j— !
- - _ 6ll
h=0.3 — l

SuP ‘ '
~ ERPOSITION p
'O "t
=< 8 18
[72]
W E=30x10° Ibs/in?
Q

v=0.
?, SAP BY DIRECT 0
= INTEGRATION p=3663 107Ibs
26— sec?/in?
=
Q a) CYLINDRICAL TUBE
-
a
%
Q
1 4 P Ibs/In
< A
S
@ 000
2 S
At =10 sec
»
TIME
| | l b) TIME VARIATION

% 2 4 6 OF LOAD
TIME (SEC x107%)

c) RADIAL DISPLACEMENT VERSUS TIME

FIGURE IS: RESPONSE HISTORY ANALYSIS OF
CYLINDRICAL TUBE

55

7. Direct Integration Time History Response Analysis of Cylindrical

Tube

The response of the simply supported tube shown in Fig. 15 for the
applied load is calculated by direct integration, The same finite
element idealization and time step At as in the mode superposition is
used, Figure 15 shows the radial displacements as calculated by the

program,

56

10.

11.

RE FERENCES

Argyris, J. H., and Kelsey, A., "Energy Theorems and Structural
Analysis,' Aircraft Engineering, Vol. 31, Oct. and Nov. 1954,
Feb. to May 1955. Also published by Butterworth's Scientific
Publications, London, 1960.

Argyris, J. H., "Continua and Discontinua,’ Proceedings Conference
on Matrix Methods in Structural Mechanics, Wright Patterson AFB,
Ohio, 1965.

Bathe, K. J., and Wilson, E. L., "Solution Methods for Eigenvalue
1

Problems in Structural Mechanics,' Int. J. Num. Methods in Engg.,
Vol. 6, No. 2, 1973.

Bathe, K. J., and Wilson, E. L., "Eigensolution of Large Structural
Systems with Small Bandwidth," ASCE Journal of Eng. Mech. Div.,
June, 1973.

Bathe, K. J., and Wilson, E. L., "Large Eigenvalue Problems in
Dynamic Analysis,' ASCE Journal of Eng. Mech. Div., Dec. 1972,

Bathe, K. J., and Wilson, E. L., "Stability and Accuracy Analysis
of Direct Integration Methods,' Int. J. of Earthquake Engg. and
Struct. Dynamics, Vol. 1, No. 2, 1973.

Bathe, K.J., and Wilson, E.L., "Thick Shell Structures",
Proceedings International Symposium on Structural Mechanics
Software, University of Maryland, College Park, Maryland,
June 1974,

Bathe, K.,J., Wilson, E,L., and Iding, R.H., "NONSAP - A Structural
Analysis Program for Static and Dynamic Response of Nonlinear
Systems'', SESM Report 74-3, Department of Civil Engineering,
University of California, Berkeley, 1974.

Clough, R. W., "Analysis of Structural Vibrations and Dynamic
Responséu Proceedings lst U.S.-Japan Symposium on Recent Advances
in Matrix Methods of Structural Analysis and Design, Tokyo, Japan,
1968.

Clough, R. W., "Earthquake Analysis by Response Spectrum Super-
position,' Bulletin of the Seismological Society of America,
vol. 52, July 1962,

Clough, R. W., and Bathe, K. J., "Finite Element Analysis of
Dynamic Response,' Proceedings 2nd US-Japan Symposium on Recent
Advances in Computational Methods of Structural Analysis and
Design, Berkeley, California, 1972,

57

12,

13.

14,

15.

16.

17,

18.

19,

20.

21.

22,

23.

24,

25.

—_— - . e Y | Sy

Clough, R. W., and Felippa, C. A., "A Refined Quadrilateral Element
for Analysis of Plate Bending," Proceedings 2nd Conference on
Matrix Methods in Structural Mechanics, Wright Patterson AFB,

Ohio, 1968,

Clough, R. W., and Wilson, E. L,, "Dynamic Finite Element Analysis
of Arbitrary Thin Shells,' Computers and Structures, Vol. 1, No.1, 1971,

Felippa, C. A., "Refined Finite Element Analysis of Linear and
Nonlinear Two-dimensional Structures," SESM Report 66-2, Dept. of
Civil Engineering, University of California, Berkeley, 1966,

Felippa, C. A.,, and Clough, R. W., '"'The Finite Element Method in
Solid Mechanics,"” Proceedings Symposium on Numerical Solutions

of Field Problems in Continuum Mechanics, Durham, North Carolina,
1968.

Hall, A. S., Tezcan, S. S., and Bulent, D., Discussion of paper
"Curved Beam Stiffness Coefficients," ASCE Journal of Struct,
Div., Feb., 1969,

Hurty, W., and Rubinstein, M. F., Dynamics of Structures, Prentice
Hall, Inc., 1964

Irons, B. M., "Structural Eigenvalue Problems: Elimination of
Unwanted Variables,' Journal A.I.A.A., Vol. 3, 1965.

Irons, B. M., "Numerical Integration Applied to Finite Element
Methods," Conf. on Use of Digital Computers in Structural
Engineering, University of New Castle, England, July 1966,

MacNeal, R.H., "The NASTRAN Theoretical Manual', NASA Report
No. NASA SP-221, September 1970.

Peterson, F. E., and Bathe, K. J., "Nonlinear Dynamic Analysis
of Reactor Core Components,'' Report S-104.3, Engineering/Analysis
Corporation, Berkeley, California, March 1972,

Poley, S., ''Mesh Analysis of Piping Systems,' IBM New York
Scientific Center Technical Report No. 320-2939, March 1968.

Przemieniecki, J, S., Theory of Matrix Structural Analysis,
McGraw-Hill, New York, 1968,

Reismann, H., and Padlog, J., "Fbrced, Axisymmetric Motions of
Cylindrical Shells," Journal of the Franklin Institute, Vol. 284,
No. 5, Nov. 1967.

Roy, J. R., "Numerical Errors in Structural Solutions,' ASCE
Journal of the Structural Division, April 1971,

58

26,

27,

28,

29,

30.

31.

32,

33.

34.

Strang, G., and Fix, G.J., "An Analysis of the Finite Element
Method", Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1973.

Timoshenko, §., Theory of Plates and Shells, 2nd Edition, McGraw-
Hill, 1959, pp. 544,

Wilson, E. L., "SAP-A General Structural Analysis Program,'
SESM Report 70-20, Dept. of Civil Engineering, University of
California, Berkeley, 1970,

Wilson, E, L., "SOLID SAP-A Static Analysis Program for Three-
Dimensional Solid Structures,” SESM Report 71-19, Dept. of Civil
Engineering, University of California, Berkeley, 1971.

Wilson, E. L., "Earthquake Analysis of Reactor Structures,"
Proceedings Symposium on Seismic Analysis of Pressure Vessels and
Piping Components, The American Society of Mechanical Engineers,
1971.

Wilson, E. L., Bathe, K. J., and Doherty, W. P., "Direct Solution
of Large Systems of Linear Equations," Computers and Structures,
to appear.

Wilson, E. L., Taylor, R. L., Doherty, W. P,, and Ghaboussi, J.,
"Incompatible Displacement Models,' ONR Symposium on Matrix
Methods in Structural Mechanics, University of Illinois, Urbana,
Illinois, Sept. 1971,

Wilson, E, L., and Penzien, J., "Evaluation of Orthogonal Damping
Matrices,' Int. J. for Num. Methods in Engg., Vol. 4, No. 1, 1972,

Zienkiewicz, 0. C., The Finite Element Method in Engineering
Science, McGraw-Hill, 1971,

Computer Program Manuals:

35.

36.

"ADL Pipe Static~Thermal-Dynamic Pipe Stress Analysis,' Arthur
D. Little, Inc., Cambridge, Massachusetts, January 1971.

"Construction Industry Programs, PIPDYN: Dynamic Analysis of

Piping Systems," Computer Sciences Corporation, Los Angeles,
California.

59

- PART C -

APPENDICES

APPENDIX - DATA INPUT TO SAP IV

1. HEADING CARD (12A6)
notes columns variable entry

(1) 1l - 72 HED(12) Enter the heading information to be
printed with the output

NOTES/

(1) Begin each new data case with a new heading card.

I1.
notes

(1)

(2)

3)

4)

(5)

(6)

(7

MASTER CONTROL CARD

columns

l1 - 5

6 - 10
11 - 15
16 - 20
21 - 25
26 - 30
31 - 35
36 - 40
“44~ T
o -
] Cx

(1)

(2)

Nodes are labeled with integers ranging from "'1" to
the total number of nodes in the system, ''NUMNP'".
The program exits with no diagnostic message if
NUMNP is zero (0).
to end the last data case in a run; i.,e., one blank
heading card (Section I) and one blank card for)

(815)
variable entry
NUMNP Total number of nodal points (joints)
in the model
NELTYP Number of element groups
LL Number of structure load cases;
GE.1l; static analysis
EQ.0 dynamic analysis
NF Number of frequencies to be found i
in the eigenvalue solution; F
EQ.O; static analysis ,Hqu‘“”h”” 1 ,
GE.1l; dynamic analysis ,or ¢ ' cwoiliwnl
v ,‘:,)_r‘ Troa »"f.’q,‘ =5
e Mt e
NDYN Analysis type code: f&;zrﬂw
EQ.O; static analysis FHe
EQ.1; eigenvalue/vector solution L
EQ.2; forced dynamic response by
mode superposition
EQ.3; response spectrum analysis
EQ 4 d1rect step—by step integration
MODEX Program execution mode
EQ.O0; problem solution
EQ.1; data check only
NAD Total number of vectors to be used
in a SUBSPACE INTERATION solution for
eigenvalues/vectors:
EQ.0; default set to:
MIN {2*NF,NF+8 }
KEQB Number of degrees of freedom
- (equations) per block of storage:
Niniv EQ.O; calculated automatically
P BN) Ve "o, by the program

NPALg

this section.

For each different element type (TRUSS, BEAM, etc.) a
new element group need be defined. Elements within
groups are assigned integer labels ranging from "1"
to the total number of elements in the group.
Element groups are input in Section IV, below.

11.1

T rey
. ke,
’ Y "“"\1 Jf

ey

Thus, two blank cards are used

II1. MASTER CONTROL CARD (continued)

Element numbering must begin with one (1) in each different
group. It is possible to use more than one group for an
element type. For example, all columns (vertical beams) of
a building may be considered one group and the girders
(horizontal beams) may be considered another group.

(3) At least one (1) load condition must be specified for a
static (NDYN.EQ.O) analysis. If the data case calls for one of
the dynamic analysis options (NDYN.EQ.1, 2, 3, or 4), no
load cases can be requested (i.e., LL is input as '0").
The program always processes Sections V (Concentrated
Load/Mass Data) and VI (Element Load Multipliers) and
expects to read some data. For the case of a dynamic
analysis (NDYN.GE.l) only mass coefficients can be input
in Section V, and one (1) blank element load multiplier
card is expected in Section VI.

(4) For a static analysis, NF.EQ.0. If NDYN.EQ.1l, 2 or 3, the
lowest NF eigenvalues are determined by the program. Note
that a dynamic solution may be re-started after eigenvalue
extraction (providing a previous eigenvalue solution for
the model was saved on tape as described in Appendix A).
NF for the original and re-start runs must be the same.

(5) If NDYN.EQ.2 or NDYN.EQ.3 the program first solves for NF
eigenvalues/vectors and then performs the forced response
solution (or the response spectrum analysis). Thus, the
program expects to read the control card governing the
eigensolution (Section VII.A) before reading data in
either Sections VII.B or VII.C., For the case NDYN.EQ.1,
the program solves for NF eigenvalues/vectors, prints the
results and proceeds to the next data case. The results
for the eigenvalue solution phase (NDYN.EQ.1) may be
saved for later use in automatic re-start (Appendix A
lists the control cards that are required to affect this
save operation), i.e. a dynamic solution may be restarted
without repeating the solution for modes and frequencies.
I1f this data case is a re-start job, set NDYN,.EQ.-2 for a
forced response solution, or set NDYN.EQ.-3 for a response
spectrum analysis. Note that the solution may be re-started
a multiple of times (to run different ground spectra.or
different time-dependent forcing functions) because the
program does not destroy the contents of the re-start tape.

If NDYN.EQ.4 the program performs the response solution by
direct step-by-step integration and no eigenvalue solution
control card should be provided.

11.2

I1.

MASTER CONTROL CARD (continued)

(6)

(7)

(8)

In the data-check-only mode (MODEX,EQ.1), the program
writes only one file, "TAPES', and this file may be
saved for use as input to special purpose programs such
as mesh plotters, etc. TAPES contains all data input
in its completely generated form. If MODEX,EQ.l, most
of the expensive calculations required during normal
(MODEX.EQ.0) execution are passed. TAPE8, however, 1is
not written during normal problem solution.

Note that a negative value for NDYN ("'-2" or "-3"),
when executing in the data-check-only mode, does not
cause the program to read the re-start tape which
contains the eigensolution information; instead, the
program jumps directly from this card to Section VII.B
(or Section VII.C) and continues reading and checking
data cards without performing the solution,

If the program is to solve for eigenvalues using the
SUBSPACE ITERATION algorithm, the entry in cc 31-35

can be used to change the total number of iteration
vectors to be used from the default minimum of 2*NF

or NF+8 (whichever is smaller) to the value "NAD'".

The effect of increasing NAD over the default value

is to accelerate convergence in the calculations for

the lowest NF eigenvalues. NAD is principally a pro-
gram testing parameter and should normally be left blank.

KEQB is a program testing parameter which allows the
user to test multiple equation block solutions using
small data cases which would otherwise be one block
problems. KEQB is normally left blank.

I11.3

III. NODAL POINT DATA (Al1,14,615,3F10.0,15,F10.0)

notes columns variable entry
1) 1 CT Symbol describing coordinate system
for this node;
EQ. ; (blank) cartesian (X,Y,Z2)
EQ.C; cylindrical (R,Y,9)
(2) 2 - 5 N Node number
(3) 6 - 10 IX(N,1) X-translation boundary condition code
11 - 15 IX(N,2) Y-translation boundary condition code
16 - 20 IX(N,3) Z-translation boundary condition code
21 - 25 IX(N,4) X-rotation boundary condition code
26 - 30 IX(N,5) Y-rotation boundary condition code
31 - 35 IX(N,6) Z-rotation boundary condition code
EQ.O; free (loads allowed)
EQ.1; fixed (no load allowed)
GT.1; master node number (beam nodes
only)
4) 36 - 45 X (N) X (or R) ~ordinate
46 - 55 Y(N) Y -ordinate
56 - 65 Z{(N) Z (or B8) -ordinate (degrees)
(5) 66 - 70 KN Node number increment
(6) 71 - 80 T (N) Nodal temperature
NOTES

(1) A special cylindrical coordinate system is allowed
for the global description of nodal point locations. 1If
"c" is entered in card column one (1), then the entries
given in cc 36-65 are taken to be references to a
global (R,Y,0) system rather than to the standard
(X,Y,2) system., The program converts cylindrical
coordinate references to cartesian coordinates using

the formulae:

X = R sin®
Y =Y
Z = R cos®

Cylindrical coordinate input is merely a user conveni-
ence for locating nodes in the standard (X,Y,Z) system,
and no other references to the cylindrical system are
implied; i.e., boundary condition specifications, out-
put displacement components, etc. are referenced to

the (X,Y,Z) system,

(2) Nodal point data must be defined for all (NUMNP) nodes.
Node data may be input directly (i.e., each node on
its own individual card) or the generation option

may be used if applicable (see note 5, below).

IIT.1

11I. NODAL POINT DATA (continued)

(3)

Admissible nodal point numbers range from ''1" to the total
number of nodes ''NUMNP'. Illegal references are:
N.LE.O or N.GT.NUMNP.

Boundary condition codes can only be assigned the
following values (M = 1,2,...,6):

IX(N,M) 0; unspecified (free) displacement

(or rotation) component

1; deleted (fixed) displacement
(or rotation) component

K; node number "K" (1 <K = NUMNP
and K # N) is the "master' node
to which the Mth degree of free-

dom at node ''N" is a 'slave'

"

IX(N,M)

IX (N, M)

An unspecified (IX(N,M) = 0) degree of freedom is free
to translate or rotate as the solution dictates.
Concentrated forces (or moments) may be applied (Section
V, below) in this degree of freedom. One (1) system
equilibrium equation is required for each unspecified
degree of freedom in the model. The maximum number

of equilibrium equations is always less than six (6)
times the total number of nodes in the model.

Deleted (IX(N,M) = 1) degrees of freedom are removed
from the final sel of equilibrium equations. Deleted
degrees of freedom are fixed (points of reaction), and
any loads applied in these degrees of freedom are
ignored by the program. Nodes that are used for
geometric reference only (i.e., nodes not assigned

to any element) must have all six (6) degrees ol free-
dom deleted. Nodal degrees of freedom having undefined
stiffness (such as rotations in an all TRUSS model,
out-of-plane components in a two-dimensional planar
model, etc.) should be deleted. Deletions have the
beneficial effect of reducing the size of the set of
equations that must be solved., The table below lists
Lthe types of degrees of freedom that are defined by
each different element type. The table was prepared
assuming that the element has general orientation in
(X,Y,Z) space.

DEGREES OF FREEDOM WITH DEFINED STIFFNESS

ELEMENT TYPE & 5y 32 66 & eY 8 ez

[
.

TRLSS
BEAM

NSO U e WIS

MEMBRANE X
2D QUADRILATERAL

3D BRICK X
PLATE. SHELL

BOUNDA RY

X
b4
X

E T T S -
x X X K K KX

I71.2

III. NODAL POINT DATA (continued)

DEGREES OF FREEDOM WITH DEFINED STIFFNESS

ELEMENT TYPE &X [)'¢ 8z 68y 6eY 5ez
8. THICK SHELL x X X
8. 3D/PIPE X x x X x x

4)

Hence, for an all 3D/BRICK model, only the X,Y,Z
translations are defined at the node, and the number

of equations can be cut in half by deleting the three

(3) rotational components at every node. If a node

is common to two or more different element types, then
the non-trivial degrees of freedom are found by combi-
nation. For example, all six (6) components are possible
at a node common to both BEAM and TRUSS elements; i.e.,
the BEAM governs.

A "master/slave" option is allowed to model rigid

links in the system. For this case, IX(N,M) = K means

that the Mth degree of freedom at node 'N" is "slave'

to (dependent on) the same (Mth) degree of freedom at

node "K'"'; node "K' is said to be the master node to

which node N is slave. Note that no actual beam need to run

from node K to node N, however the following restrictions hold:

(a) Node one (1) cannot be a master node; i.e.,
K #1,
(b) Nodes "N" and "K' must be beam-only nodes;
i.e., no other element type may be connected
to either node N or K.
(c) A node "N" can be slave to only one master node,'K";
multiple nodes, however , can be slave to the same master,.
(d) If the beam from "N" to "K" is to be a
rigid link arbitrarily oriented in the
X,Y,Z space, then all six (6) degrees of free-

n__r "

dom at node N must be made slaves to node K

Displacement/rotation components for slave degrees of
freedom at node "N" are not recovered for printing;
i.e., zeroes appear as output for slave degrees of
freedom.

When CT (Col. 1) is equal to the character ''Cc", the values
input in CC 36-65 are interpreted as the cylindrical (R,Y, 6)
coordinates of node ''N''. Y is the axis of symmetry. R is

the distance of a point from the Y-axis. The angle 8 is
measured clockwise from the positive Z-axis when looking in the
positive Y direction. The cylindrical coordinate values are
printed as entered on the card, but imed iately after printing the

I11.3

ITII. NODAL POINT DATA (continued)

(5)

(6)

global cartesian values are computed from the input entries,
Note that boundary condition codes always refer to the

the (X,Y,Z) system even if the node happens to be located
with cylindrical coordinates.

Nodal point cards need not be input in node-order sequence;
eventually, however, all nodes in the integer set [1, NUMNP}
must be defined. Joint data for a series of nodes

[Nl, N+l x KN,, N;+2 x KN ,...,NZ}

may be generated from information given on two (2) cards
in sequence:

CARD 1 / Nl,IX(Nl,l),...,IX(N1,6),X(N1),...,KNl,T(Nl)/
CARD 2 / N2,IX(N2,1),...,IX(N2,6),X(N2),...,KN2,T(N2)/

KN, is the mesh generation parameter given on the second
card of a sequence, The first generated node is

N, +1 XKN2; the second generated node is N, +2 AKNZ, etc,
Generation continues until node number N -KN2 is
established. Note that the node difference N2 =N, must
be evenly divisible by KNo. Intermediate nodes between
N, and N, are located at equal intervals along the
straight line between the two points. Boundary condition
codes for the generated data are set equal to the values
given on the first card. Node temperatures are found by
linear interpolation between T(Nl) and T(N2). Coordinate
generation is always performed in the X,Y,2) system, and
No generation is performed if KNy is zero (blank).

Nodal temperatures describe the actual (physical)
temperature distribution in the Structure, Average
element temperatures established from the nodal values
are used to select material properties and to compute
thermal strains in the model (static analysis only),

IT1.4

e s
.

- —

1v, ELEMENT DATA

D) .
/*TYPQ/I’— THREE~DIMENSIONAL TRUSS ELEMENTS -

—

Truss elements are identified by the number 1. Axial forces and
stresses are calculated for each member., A uniform temperature
change and inertia loads in three directions can be considered
as the basic element load conditions. The truss elements are
described by the following sequence of cards:

A, Control Card (315)

Columns 1l - 5 The number 1
6 - 10 Total number of truss elements
11 - 15 Number of material prOperty cards
6 - 20 TYfE PF cRris e

B. Material Property Cards (15,5F10.0)

There need be as many of the following cards as are
necessary to define the properties listed below for each
element in the structure.

Columns 1l - 5 Material identification number
6 - 15 Modulus of elasticity

16 - 25 Coefficient of thermal expansion

26 - 35 Mass density (used to calculate mass matrix)
36 -~ 45 Crdéss-sectional area or frwswdiaad 2f o e
46 - 55 Weight density (used to calculate gravity

e e loads)

L 15 e

C. Element Load Factors (4F10.0) Four cards

Three cards specifying the fraction of gravity (in each
of the three global coordinate directions) to be added
to each element load case.

Card 1: Multiplier of gravity load in the +X direction

Columns 1 - 10 Element load case A
' 11 - 20 Element load case B
21 - 30 Element load case C
31 - 40 Element load case D
lg‘ Card 2: As above for gravity in the +Y direction

Card 3: As above for gravity in the +Z direction

Card 4: This indicates the fraction of the thermal load
to be added to each of the element load cases.

D. Element Data Cards (415,F10.0,15)

One card per element in increasing numerical order starting
with one.

Columns 1 - 5 Element number

1v.1l.1

LR Y

Iv,

NOTES/

ELEMENT DATA (continued)

1

(2)

Columns 6 - 10 Node number I

11 - 15 Node number J

16 - 20 Material property number

21 - 30 Reference temperature for zero stress

31 -~ 35 Optional parameter K used for automatic

generation of element data.

A ST AREA

45 - 50 TGRM>UP
If a series ofelements exist such that the element number, ﬂ
N., is one greater than the previous element number (i.e.
Ny = N, # 1) and the nodal point number can be given by

= +
I, =1, +k

Ji = Ji—l + k
then only the first element in the series need be provided.
The element identification number and the temperature for
the generated elements are set equal to the values on the
first card. If k (given on the first card) is input as
zero it is set to 1 by the program,

The element temperature increase AT used to calculate H
thermal loads is given by

AT = (Ti + TJ)/Z.O - Tr

where (T, + T _.)/2.0 is the average of the nodal temperatures
specified on the nodal point data cards for nodes i and j;
and Tr is the zero stress reference temperature specified
on the element card. For truss elements it is generally
more convenient to set 'I‘i =T, = 0.0 such that AT = -T,
(note the minus sign). Other types of member loadings

can be specified using an equivalent AT. 1If a truss
member has an initial lack of fit by an amount d (positive
if too long) then AT =d/(yL) . If an initial prestress
force P (positive if tensile) is applied to the member
ends that is released after the member is connected to

the rest of the structure then AT = - P/(qAE). In the
above formulas A = cross section area, L = member length
and o = coefficient of thermal expansion.

Iv.1.2

-

1v, ELEMENT DATA (continued)

TYPE 2 - THREE-DIMENSIONAL BEAM ELEMENTS e

Beam elements are identified by the number 2, Forces (axial and
shear) and moments (bending and torsion) are calculated (in the
beam local coordinate system) for each beam. Gravity loadings
in each coordinate direction and specified fixed end forces form
the basic element load conditions.

The beam elements are described by the following sequence of
cards:

A, Control Card (515)

Columns 1 - 5 The number 2
6 - 10 Total number of beam elements
11 - 15 Number of element property cards
16 -~ 20 Number of fixed end force sets
21 - 25 Number of material property cards

B. Material Property Cards (15,3F10.0)

Columns 1 - 5 Material identification number
6 - 15 Young's modulus
16 - 25 poisson's ratio
26 - 35 Mass density (used to calculate mass matrix)
36 - 45 Weight density (used to calculate gravity
loads)

C. Element Property Cards (15,6F10.0)

Columns 1 - 5 Geometric property number
6 - 15 Axial area
16 - 25 Shear area associated with shear forces in
local 2-direction
26 ~ 35 Shear area associated with shear forces in
local 3-direction
36 45 Torsional inertia
46 55 Flexural inertia about local 2-axis 1 Y,
R . or AA*«J«J;/V)‘ A S
56 - 65 Flexural inertia about local 3-axis] /

1
(8 IS TR A R

One card is required for each unique set of properties.
Shear areas need be specified only if shear deformations
are to be included in the analysis.

1v.2.1

IV. ELEMENT DATA (continued)

Y |

\"
K /§
[] } /
/ Ms
R3
J NOTE:
2 K IS ANY NODAL POINT
WHICH LIES IN THE LOCAL
1-2 PLANE (NOT ON THE 1-AXIS)
3

LOCAL COORDINATE SYSTEM FOR BEAM ELEMENT

D. Element Load Factors (4F10.0)

Nodal point loads (no moments) due to gravity are computed.
Three cards need be supplied which specify the fraction of these
loads (in each of the three global coordinate directions) to be
added to each element load case.

Card 1: Multiplier of gravity load in the +X direction

Columns 1 - 10 Element load case A
11 - 20 Element load case B
21 - 30 Element load case C
31 - 40 Element load case D

Card 2: As above for gravity in the +Y direction

Card 3: As above for gravity in the +Z direction

E. Fixed-End Forces (I5,6F10.0/15,6F10.0)

Two cards are required for each unique set of fixed-end forces
occurring in the analysis. Distributed loads and thermal loads
can be specified using the fixed-end forces.

Card 1:

Columns 1 - 5 Fixed-end force number
6 - 15 Fixed-end force in local l-direction at Node 1
16 - 25 Fixed-end force in local 2-direction at Node I
26 - 35 Fixed-end force in local 3-direction at Node I
36 - 45 Fixed-end moment about local l-direction at Node 1
46 - 55 Fixed-end moment about local 2-direction at Node !
56 - 65 Fixed-end moment about local 3-direction at Node I

Iv.2.2

1V. ELEMENT DATA (continued)

Card 2:
Columns 1 - 5 Blank
6 - 15 Fixed-end force in local l-direction at Node J
16 - 25 Fixed-end force in local 2-direction at Node J
26 - 35 Fixed-end force in local 3-direction at Node J
36 - 45 Fixed-end moment about local l-direction at Node J
46 - 55 Fixed-end moment about local 2-direction at Node J
56 - 65 Fixed—-end moment about local 3-direction at Node J

Note that values input are literally fixed-end values.
Corrections due to hinges and rollers are performed within the
program. Directions 1, 2 and 3 indicate principal directions in
the local beam coordinates

F. Beam Data Cards (1015,216,18)

Columns 1 - 5 Element number
6 - 10 Node number I
11 - 15 Node number J
16 - 20 Node number K - see accompanying figure
21 - 25 Material property number
26 - 30 Element property number

1 -3

3 S A Fixed~-end force identification for
36 - 40 B

41 - 45 element load cases A, B, C, and D
46 - 50 D respectively

51 - 56 End release code at node I

57 - 62 End release code at node J

63 - 70 Optional parameter K used for automatic
generation of element data. This option is
described below under a separate heading. If
the option is not used, the field is left blank.

The end release code at each node is a six digit number of ones
and /or zeros. The lst, 2nd, 6th digits respectively
correspond to the force components Rl, RZ, R3, M1, M2, M3 at
each node.

1f any one of the above element end forces is known to be zero
(hinge or roller), the digit corresponding to that component is

a one,.

NOTES/

(1) 1t a series of elements occurs in which each element number NEi is one
greater than the previous number NEi-l

i.e., NEi = NEi—l +1

only the element data card for the first element in the series need be given
as input, provided

1v.2.3

(2)

Iv.

and

are

The
for

When successive beam elements have the same stiffness, orientation

and

stiffness. Note this when numbering the beams to obtain maximum efficiency.

ELEMENT DATA (continued)

(1) The end nodal point numbers are NIi

[
zZ
-

-
+
=

NJ, = NJ, + k
i i

the

(2) material property number
(3) element property number
(4) fixed-end force identification numbers for each element load case
(5) element release code

(6) orientation of local 2-axis

the same for each element in the series.

value of k, if left blank, is taken to be one. The element data card
the last beam element must always be given.

element loading, the program automatically skips recomputation of the

1v.2.4

1V. ELEMENT DATA (continued)

TYPE 3 - PLANE STRESS MEMBRANE ELEMENTS

Quadrilateral (and triangular)elements can be used for plane
stress membrane elements of specified thickness which are oriented in
an arbitrary plane. All elements have temperature-dependent orthotropic
material properties, Incompatible displacement modes can be included at

the element level in order to improve the bending properties of the
elements.

A general quadrilateral elemeént is shown below:

z
u K
L
—V
0 J

—

A

A local element coordinate system is defined by a u~v system. The v-axis
coincides with the I-J side of the element. The u axis is normal to the
v-axis and is in the plane defined by nodal points I, J and L. Node K
must be in the same plane if the element stiffness calculations are to

be correct. The following sequence of cards define the input data for

a set of TYPE 3 elements,

A, Control Card (615)

Columns 1 -~ 5 The number 3
6 - 10 Total number of plane stress elements
11 - 15 Number of material property cards

16 - 20 Maximum number of temperature points for any
one material; see Section B below.

30 Non-zero numerical punch will suppress the
introduction of incompatible displacement
modes.

B. Material Property Information

Orthotropic, temperature-dependent material properties are
possible. For each different material,the following group of
cards must be supplied.

1v.3.1

1V, ELEMENT DATA (continued)

1. Material Property Card (215,3F10.0)

Columns 1 - 5 Material identification number

6 - 10 Number of different temperatures for which
properties are given., If this field is
left blank, the number is taken as one,

11 - 20 weight density of material (used to
calculate gravity loads)

21 - 30 Mass density (used to calculate mass matrix)

31 - 40 Angle P in degrees, measured counter-
clockwise from the v-axis to the n-axis.

K

The n-s axes are the principal axes for the orthotropic material,
Weight and mass densities need be listed only if gravity and
inertia loads are to be considered.

2. Two cards for each temperature:

Card 1: (8Fl1l0.0)

Columns 1 - 10 Temperature
11 - 20 Modulus of Elasticity - E,.
21 - 30 Modulus of Elasticity - E !
31 - 40 Modulus of Elasticity Ey
41 - 50 sStrain Ratio ~ i Vhs)
51 - 60 Strain Ratio - v,
6l - 70 Strain Ratio - Vgt
71 - 80 Shear Modulus - Gps

1v.3.2

IV. ELEMENT DATA (continued)

Card 2: (3F10.0)

Columns 1 - 10 Coefficient of thermal expansion - o
11 - 20 Coefficient of thermal expansion - 02
21 - 30 Coefficient of thermal expansion - oy

X)

All material constants must always be specified. For plane
stress, the program modifies the constitutive relations to
satisfy the condition that the normal stress Ot equals zero,

C. Element load Factors (5F10.0)

Four cards are used to define the element load cases A, B, C
and D as fraction of the basic thermal, pressure and acceleration
loads.

First card, load case A: Second card, load case B, etc.

Columns 1 - 10 Fraction of thermal load
11 - 20 Fraction of pressure load
21 - 30 Fraction of gravity in X-direction
31 - 40 Fraction of gravity in Y-direction
41 -~ 50 Fraction of gravity in Z-direction

D. Element Cards (615,2F10.0,215,F10.0)

One card per element must be supplied (or generated) with the
following information:

Columns 1 5 Element number
6 - 10 Node 1
11 - 15 Node J
16 - 20 Node K
21 - 25 Node L (Node L must equal Node K for
triangular elements)
26 - 30 Material identification number
31 - 40 Reference temperature for zero stresses
within element
41 - 50 Normal pressure on I-J side of element
51 - 55 Stress evaluation option 'n"
56 - 60 Element data generator 'k
61 - 70 Element thickness
NOTES/
(1) Element Data Generation - Element cards must be in element number
sequence. If cards are omitted, data for the omitted elements will
be generated. The nodal numbers will be generated with respect to the
first card in the series as follows:

= ¥
1n In-l Tx

Jn = Jn_1 + k

. 1v.3.3

2)
3)
(4)

5

IV, ELEMENT DATA (continued)

Kn = Kn_1 + k

L =1L + K
n n-1

All other element information will be set equal to the information on
(A

the last card read. The data generation parameter "k'" is specified
on that card.

Stress Print Option - See element type 4

Thermal Data - See element type 4

Use of Triangles - See element type 4

Use of Incompatible Modes - See element type 4

Iv.3.4

~

Ny

IV. ELEMENT DATA (continued) ﬁ

TYPE 4 -

(1)

(ii)

(iii)

(C/‘/{*/
TWO-DIMENSIONAL FINITE ELEMENTS o

Quadrilateral @nd triangular) elements can be used as:
Axisymmetric solid elements symmetrical about the Z-axis.
The radial direction is specified as the Y-axis. Care must
be exercised in combining this element with other types of
elements.

Plane strain elements of unit thickness in the Y-Z plane.

Plane stress elements of specified thickness in the Y-Z plane.

All elements have temperature-dependent orthotropic material

properties. Incompatible displacement modes can be included at the
element level in order to improve the bending properties of the element.

A.

A general quadrilateral element is shown below:

Control Card (615)

Columns 1 - 5 The number 4
6 - 10 Total number of elements
11 15 Number of different materials
16 20 Maximum number of temperature cards for any one
material - see Section B below.
0 for axisymmetric analysis
2541 for plane strain analysis
2 for plane stress analysis
30 Non-zero numerical punch will suppress the
introduction of incompatible displacement modes.
Incompatible modes cannot be used for triangular
elements and are automatically suppressed.

1v.4.1

IV. ELEMENT DATA {(continued)

B. Material Property Information

Orthotropic, temperature-dependent material propérties are
possible, For each different material the following group
of cards must be supplied.

1. Material Property Card (215,3F10.0)

Columns 1 - 5 Material identification number
6 - 10 Number of different temperature for which
properties are given, If this field is

left blank, the number is taken as one.

11 - 20 Weight density of material (used to calcu-
late gravity loads)

21 - 30 Mass density (used to calculate mass matrix)

31 - 40 Angle B in degrees, measured counter-
clockwise from the v-axis to the n-axis.

K

PRINCIPAL MATERIAL AXES

The n-s axes are the principal axes for the orthotropic
material, Weight density is needed only if gravity and
inertia loads are to be considered.

2, Two cards for each temperature:

Card 1: (8F10.0)

Columns 1 10 Temperature
11 - 20 Modulus of elasticity - Ej
21 - 30 Modulus of elasticity - Eg
31 - 40 Modulus of elasticity - E,

41 - 50 Strain ratio ~ “hs
51 - 60 Strain ratio - \nt
61 - 70 Strain ratio - Vgt
71 - 80 Shear modulus - Gns

1v.4.2

of thermal expansion - @
of thermal expansion - O
of thermal expansion - oy

be
ive

specified. In plane stress,
relations to satisfy the

element load cases A, B, C
rmal, pressure and accelera-

ard, load case B; etc.

thermal load
pressure load
gravity in X-direction
gravity in Y-direction
gravity in Z-direction

0)

ied (or generated) with the

er

L must equal Node K for
ngular elements)
ntification number
mperature for zero stresses
nt
ure on I-J side of element

Tt

ation option n

0o
generator k
kness (For plane strain set

by program)

IV. ELEMENT DATA (continued)
Card 2: (3Fl10.0)
Columns 1l - 10 Coefficient
11 - 20 Coefficient
21 - 30 Coefficient
All material constants must always
the program modifies the constitut
condition that the normal stress Oy equals zero,
C. Element Load Factors
Four cards are used to define the
and D as fraction of the basic the
tion loads.
First card, load case A; Second c
Columns 1 - 10 Fraction of
11 - 20 Fraction of
21 - 30 Fraction of
31 - 40 Fraction of
41 - 50 Fraction of
D. Element Cards (615,2F10.0,215,F10.
One card per element must be suppl
following information:
Columns 1 - 5 Element numb
6 - 10 Node 1
11 -~ 15 Node J
16 - 20 Node K
21 - 25 Node L (Node
tria
26 - 30 Material ide
31 - 40 Reference te
within eleme
41 - 50 Normal press
51 - 55 Stress evalu
56 - 60 Element data
61 - 70 Element thic
equal to 1.0
NOTES/

(1) Element Data Generation ~ Element cards mus
sequence., If cards are omitted the omitted
generated. The nodal numbers will be gencr
first card in the series as follows:

1v.4.3

t be in element number
element data will be
ated with respect to the

IV. ELEMENT DATA (continued)

K =K + K

= +
Ln Ln-l k
All other element information will be set equal to the information
on the last card read. The data generation parameter k is given on that
card.

(2) Stress Print Option - The following description of the stress print
option applies to both element types 3 and 4. The value of the stress
print option "n" can be given as 1, 0, 8, 16 or 20.

0 = origin of natural s-t coordinates (Fig. 5-2). Points 1, 2, 3 and
4 are midpoints of sides. The points at which stresses are output
depend on the value of n as described in the following table.

n Stresses output at
1 None
0 0
8 0, 1
16 0,1, 2, 3
20 0,1, 2, 3, 4

Iv.4.4

IV. ELEMENT DATA (continued)

The stresses at 0 are printed in a local y-z coordinate system.
For element type 3, side I-J defines the local y-z axes in the
plane 6f the element. For element type 4 the local y-z axes are
parallel to the global Y-Z axes.

STRESSES AT

Z O FOR ELEMENT
TYPE 3
Y
1 LOCAL y-z
COORDINATES
GLOBAL
COORDINATES
L K
TSZZ
—n Si2

STRESSES AT
O FOR ELEMENT
TYPE 4

Y

LOCAL AND GLOBAL
Y-2

Iv.4.5

IV. ELEMENT DATA (continued)

For both element types 3 and 4 the stresses at each edge midpoint are
output in a rectangular n-p coordinate system defined by the outward
normal to the edge (n axis) and the edge (p axis). The positive p

axis for points 1, 2, 3 and 4 is from L to I, J to K, I to J and K to L
respectively (positive direction is counterclockwise about element).

COORDINATE SYSTEMS
FOR OUTPUT OF

EDGE STRESSES

POSITIVE STATE
OF STRESS AT

THE MIDPOINT

OF A SIDE

1v.4.6

(3)

IV, ELEMENT DATA (continued)

The stresses for an element are output under the following headings:
Ss1l1, s22, sl12, S33, S-MAX, S-MIN, ANGLE. The normal stresses Sll
and S22 and the shear stress S12 are as described above. S-MAX and
S-MIN are the principal stresses in the plane of the element and $33
is the third principal stress actzﬁg on the plane of the element.
ANGLE is the angle in degrees from (li—the local y axis at point O,
or (2) the n axis at the midpoints, to the axis of the algebraically
largest principal stress.

For triangular elements the stress print option is as described
above except that n =20 is not valid. If n=20 is input, n will
be set to 16 by the program.

Thermal Data - Nodal temperatures as specified on the nodal point data
cards are used by element types 3 and 4 in the following two ways:

(1) Temperature-dependent material properties are approximated by
interpolating (or extrapolating) the input material properties
at the temperature T, corresponding to the origin of the local
s-t coordinate system (see Fig. 5.2 for description of local
element coordinates). The material properties throughout the
element are assumed constant corresponding to this temperature,

't
! K T AT+ Tt K=L
T. =
L ° 4.0 s
ORIGIN
ORIGIN
1 | 1

(2) For computation of nodal loads due to thermal strains in the
element a bilinear interpolation expansion for the temperature
change AT (s,t) is used.

4
AT (s,t) = i§1 hi(s,t) Ti - Tr

where Ti are the nodal temperatures specified on the joint
data cards, Tr is the reference stress free temperature and

hi (s,t) are the interpolation functions given by Eq. 5.7.

Iv.4.7

IV. ELEMENT DATA (continued)

(4) Use of Triangles - In general, the elements are most effective when
they are rectangular, i.e. the elements are not distorted. There-~
fore, regular and rectangular element mesh layouts should be used as
much as possible. In particular, the triangle used is the constant
strain triangle; and it should be avolded, since its accuracy is
not satisfactory.

(5) Use of Incompatible Modes - Incompatible displacement modes have
been found to be effective only when used in rectangular elements,
They should always be employed with care. Since incompatible modes
are used for all elements of a group it is recommended to use
Separate element groups for elements with incompatible modes and
elements without incompatible modes, respectively. (See Section II,
note (2)),

Iv.4.8

I1v. ELEMENT DATA (continued)

TYPE 5 - THREE-DIMENSIONAL SOLID ELEMENTS (EIGHT NODE BRICK)

General three-dimensional, eight-node, isoparametric elements with
three translational degrees of freedom per node are identified by the number
5. Isotropic material properties are assumed. The element load cases (A,

B, C and D) are defined as a combination of surface pressure, hydrostatic
loads, inertia loads in three directions and thermal loads. The six com-
ponents of stress and three principal stresses are computed at the center

of each element. Also, surface stresses are evaluated. Nine incompatible
displacement modes are assumed in the formation of element stiffnes matrices,
For 8-node elements without incompatible modes use element type 8.

A. Control Card (415)

Columns 1 - 5 The number 5
6 - 10 Number of 8-node solid elements
11 - 15 Number of different materials
16 - 20 Number of element distributed load sets

B. Material Property Cards (15,4F10.0) One card for each
different material

Columns 1 -~ 5 Material identification number
6 - 15 Modulus of elasticity (only elastic,
isotropic materials are considered)
16 -~ 25 Poisson's ratio
26 - 35 Weight density of material (for calculation
of gravity loads or mass matrix)
36 - 45 Coefficient of thermal expansion

C. Distributed Surface Loads (215,2F10.2,15) One card is required
for each unique set of uniformly distributed surface loads
and for each reference fluid level for hydrostatically varying
pressure loads. See notes (4) and (5) for sign convention.

Columns 1 - 5 Load set identification number

6 - 10 LT (load type)
LT = 1 if this card specifies a uniformly
distributed load.
LT = 2 if this card specifies a
hydrostatically varying pressure.

11 - 20 P
If LT =1, P is the magnitude of the
uniformly distributed load
If LT = 2, P is the weight density of the
fluid causing the hydrostatic pressure

21 - 30 Y
1f LT = 1, leave blank
If LT = 2, Y is the global Y coordinate
of the surface of fluid causing hydrostatic
pressure loading

31 - 35 Element face number on which surface load
acts. Face numbers are from 1 to 6 as

1v.5.1

IV, ELEMENT DATA (continued)

described in note (5) for uniformly
distributed loads and can be only faces
2, 4 or 6 for hydrostatically varying
pressures.

D. Acceleration due to gravity (Fl0.2)

Columns 1 - 10 Acceleration due to gravity (for calculation
of mass matrix)

E. Element load Case Multipliers (5 cards of 4F10.2)

Multipliers on the element load cases are scaling factors
in order to provide flexibility in modifying applied loads.

Card 1: Columns 1 - 10 PA

11 - 20 pB
21 - 30 PC i:‘;:.su;? Load
31 - 40 PD lp l1ers

PA is a factor used to scale the complete set of distributed
surface loads. This scaled set of loads is assigned to
element load case A. Note that zero is a valid multiplier.
PB, PC and PD are similar to PA except that scaled loads

are assigned to element load cases B, C and D respectively.
For the majority of applications these factors should be

1.0

Card 2: Columns 1 - 10 TA
11 - 20 TB Thermal load
21 - 30 TC multipliers
31 - 40 TD

TA is a factor used to scale the complete set of thermal
loads. The scaled set of loads are then assigned to element
load case A. TB, TC and TD are similar and refer to element
load cases B, C and D respectively,

Card 3: Columns 1 - 10 GXA
11 - 20 GXB Gravity load
21 - 30 GXC multipliers for + X
31 - 40 GXD global direction

Card 4: Columns 1 - 10 GYA
11 - 20 GyB
21 - 30 GYC
31 - 40 GYD

Gravity load
multipliers for + Y
global direction

Card 5: Columns 1 - 10 GZA
1] - 20 GZB
21 - 30 GZC
31 - 40 GZD

Gravity load
multipliers for + 2
global direction

A A P

1v.,5.2

e —

IV. ELEMENT DATA (continued)

Gravity loads are computed from the weight density of the
material and from the geometry of the element. GXA is a
multiplier which reflects the location of the gravity axis
"and any load factors used. The program computes the weight
of the element, multiplies it by GXA and assigns the
resulting loads to the + X direction of element load case A.
Consequently GXA is the product of the component of gravity
along the + X global axis (from - 1.0 to 1.0) and any desired
load factor. GXB, GXC and GXD are similar to GXA and refer
to element load cases B, C and D respectively. GYA and GZA
refer to the global Y and Z directions respectively,

F. Element Cards (1215,412,211,F10.2)

Columns 1 - 5 Element number
6 - 10 1
11 - 15 Global node point 2
16 - 20 numbers corresponding 3
21 - 25 to element nodes 4
i? _ gg (See note (3)) 2
36 - 40 7
41 - 45 8
46 - 50 Integration Order
51 - 55 Material Number
56 - 60 Generation Parameter (INC)
61 - 62 LSA LSA is the distributed surface
63 - 64 LSB load set identification number
65 - 66 LSC of the distributed load acting
67 - 68 LSD on this element to be assigned

to element load case A. LSB, LSC
and LSD refer to element load cases
B, C and D respectively

69 - 70 Face numbers for stress output

71 - 80 Stress-free element temperature

NOTES/

1 Element Generation

1. Element cards must be in ascending order
2. Generation is possible as follows:
If a series of element cards are omitted,
a. Nodal point numbers are generated by adding INC to
those of the preceding element, (If omitted, INC
is set equal to 1,)

b. Same material properties are used as for the
preceding element.
c. Same temperature is used for succeeding elements.

1v,5.3

v,

ELEMENT DATA (continued)

(2)

(3)

d. If on first card for the series the integration
order is:
>0 Same value is used for succeeding elements.
=0 A new element stiffness is not formed.
Element stiffness is assumed to be identical
to that of the preceding element.
<0 Absolute value is used for the first element
of the series, and the same element stiffness
is used for succeeding elements,
e. If on first card for the serices, the distributed
load number (for any load case) is:
>0 sSame load is applied to succeeding elements,
<0 The load case is applied to this element but
not to succeeding elements in the series.

3. Element card for the last element must be supplied.

Integration Order

Computation time (for element stiffness) increases with
the third power of the integration order. Therefore, the
smallest satisfactory order should be used. This is found
to be:

2 for rectangular element

3 for skewed element

I may be used if element is extremely distorted in shape,

but not recommended.

Mesh should be selected to give "rectangular"elementsas far
as possible.

Element Coordinate System

Local element coordinate system is a natural system for
this element in which the element maps onto a cube. Local
element numbering is shown in the diagram below:

1v.5.4

Iv,

ELEMENT DATA (continued)

4)

(5)

Identification of Element Faces

Element faces are numbered as follows:

direction Faces 1,3,5 are
direction positive faces

direction
direction

Face corresponds to +
corresponds to -
corresponds to +

1

2

3

4 corresponds to - Faces 2,4,6 are
5

6

0

corresponds to + direction negative faces

corresponds to - direction
corresponds to the center of the element

0O 00T

Distributed Surface Loads

Two types of surface loadings may be specified; load
type 1 (LT = 1), uniformly distributed surface load and
load type 2 (LT = 2), hydrostatically varying surface
pressure (but not surface tension). Both loading types are
for loads normal to the surface and do not include surface
shears. Surface loadings that do not fall into these
categories must be input as nodal loads on the
concentrated load data cards (see Section V).

(1) LT = 1: A positive surface load acts in the direc-
tion of the outward normal of a positive element face and
along the inward normal of a negative element face as
shown in the following diagram.

> -
>)
) —» aORbORC
-a
_,y‘\\\ //,ﬂ‘—en AXIS
NEGAﬂVE) (POQTNE
FACES 2,4,6 FACES 1,3,5

POSITIVE SURFACE LOADING P

If the uniformly distributed surface loading P is input as
a positive quantity then it describes pressure loading on
faces 2, 4 or 6 and tensile loading on faces 1, 3 or 5.

If P is input as a negative quantity then it describes
tensile loading on faces 2, 4 or 6 and pressure on faces
1, 3 or 5.

Iv.5.5

Iv.

ELEMENT DATA (continued)

(2) LT = 2: A hydrostatically varying surface pressure
on element faces 2, 4 or 6 can be specified by a reference
fluid surface and a fluid weight density Yy as input. Only
one hydrostatic surface pressure card need be input in
order to specify a hydrostatic loading on the complete
structure. The consistent nodal loads are calculated
by the program as follows. At each numerical integration
point "i'" on an element surface the pressure P; is calcu-
lated from

Pi =Y (Yi - Yref)
where Yi is the global Y coordinate of the point in question
and Y, . ¢ specifies the fluid surface assuming gravity acts
along the ~Y axis

Yi
——————“"’x

If Py > 0, corresponding to surface tension,the contri-
bution is ignored. If an element face is such that

Yi > Ypeg for all i (16 integration points are used by
program) then nonodal loads will be applied to the element,
If some P; >0 .nd some P; <0 for a particular face, then
approximate nodal loads are obtained for the partially
loaded surface.

I1v.5.6

1V. ELEMENT DATA (continued)

(6). Thermal loads

Thermal loads are computed assuming a constant
temperature increase AT throughout the element.

AT =T - T

Tavg = the average of the 8 nodal point
temperatures specified on nodal
point data cards

T = stress free element temperature
specified on the element card.

(7). Element Load Cases

Element load case A consists of all the contributions
from distributed loadings, thermal loadings and gravity
loading for all the elements taken collectively,

Load case A = T (PA x pressure loading
+ TA x thermal loading
+ GXA X gravity X loading
+ GYA X gravity Y loading
+ GZA X gravity Z loading)

Element load case A for the set of three dimensional solid
elements is added to element load case A for the other
element types in the analysis. The treatment of element
load cases B, C and D is analogous to that of element

load case A. The loading cases for the structure are
obtained by adding linear combinations of element load
cases A, B, C and D to the nodal loads specified

on the joint data cards,

(8) Output of Element Stresses

H l. At the centroid of the element, stresses are referred to
the global axes. Three principal stresses are also
presented.

2. At the center of an element face, stresses are referred
to a set of local axes (x,y,z). These local axes
are individually defined for each face as follows:
Let nodal points I, J, K and L be the four corners
of the element face. Then

X is specified by LI - JK, where LI and JK are midpoints
of sides L~I and J-K,

z is normal to x and to the line Joining midpoints IJ and
KL.

y is normal to x and z, to complete the right-handed system.

Iv.5.7

1v.,

ELEMENT DATA (continued)

The corresponding nodal points I, J, Kand L in each face
are given in the table.

<

FACE NODAL POINTS

I J K L
1 1 2 6 5
2 4 3 7 8
3 3 7 6 2
4 4 8 5 1
S 8 5 6 7
6 4 1 2 3

Two surface principal stresses and the angle between the
algebraically largest principal stress and the local x

axis are printed with the output. It is optional to choose
one or two locations of an element where stresses are to

be computed.

centroid of the element.

In the output, 'face zero" designates the

Iv.5.8

IV,

ELEMENT DATA (continued)

TYPE 6 - PLATE AND SHELL ELEMENTS (QUADRILATERAL)

A.

Control Card (3I5)

Columns 1- 5
6 - 10
11 - 15

Material Property

The number 6
Number of shell elements
Number of different materials

Information

Anisotropic material properties are possible.
each different material, two cards must be supplied.

For

XX
€
Yy

xy

case A
case B
case C
case D

Card 1: (110,20X,4F10.0)
Columns 1 - 10 Material identification number
31 - 40 Mass density
41 - 50 Thermal expansion coefficient a
51 - 60 Thermal expansion coefficient @
61 - 70 Thermal expansion coefficient axy
Card 2: (6F10.0)
Columns 1 - 10 Elasticity element C Elements in plane stress
11 - 20 Elasticity element Cx material matrix [C
21 - 30 Elasticity element C G '« Sxv Cxs
31 - 40 Elasticity element C 5 c o ¢
41 - 50 Elasticity element ¢y yy Il xy yy ys
51 - 60 Elasticity element G T c C G
xy xs xS ys
Element Load Multipliers (5 cards)
Card 1: (4F10.0)
Columns 1 - 10 Distributed lateral load multiplier for load
11 - 20 Distributed lateral load multiplier for load
21 - 30 Distributed lateral load multiplier for load
31 - 40 Distributed lateral load multiplier for load
Card 2: (4F10.0)
Columns 1 - 10 Temperature multiplier for load case A
11 - 20 Temperature multiplier for load case B
21 - 30 Temperature multiplier for load case C
31 - 40 Temperature multiplier for load case D
Card 3: (4F10.0)
Columns 1 - 10 X-direction acceleration for load case A
11 - 20 X-direction acceleration for load case B
21 - 30 X-direction acceleration for load case C
31 - 40 X-direction acceleration for load case D

Iv.6.1

IV, ELEMENT DATA (continued)

NOTES/

Card 4: (4F10.0) Same as Card 3 for Y-direction

Card 5: (4F10.0) Same as Card 3 for Z-direction

31 - 35 Matefial identification (if left blank,
taken as one)

36 - 40 Element data generator Kn

51 -~ 60 Distributed lateral load (pressure)

61 - 70 Mean temperature variation T from the reference

level in undeformed position

71 - 80 Mean temperature gradient JT/Xx across the

shell thickness (a positive temperature
gradient produces a negative curvature).

Element Cards (815,F10.0)

One card for each element

Columns 1 - 5 Element number
6 - 10 Node I
11 - 15 Node J
16 - 20 Node K
21 - 25 Node L
26 - 30 Node O
41 - 50 Element thickness

(1) Nodal Points and Coordinate Systems

The nodal point numbers I, J, K and L are in sequence in a
counter-clockwise direction around the element. The local
element coordinate system (x, y, z) is defined as follows:

X

z

y

Specified by LI - JK, where LI and JK are midpoints of
sides L-1I and J-X.

Normal to x and to the line joining midpoints IJ and KL.

Normal to x and z to complete the right-handed system.

This system is used to express all physical and kinematic
shell properties (stresses, strains, material law, etc.),
except that the body force density is referred to the
global coordinate system (X, Y, Z).

Iv.6.2

1V, ELEMENT DATA (continued)

KL

JK

J

For the analyses of shallow shells, rotational constraints normal
to the surface may be imposed by the addition of boundary elements at
the nodes (element type #7).

2) Node O

When columns 26 - 30 are left blank, mid-node properties
are computed by averaging the four nodes.

3 Element Data Generation

Element cards must be in element number sequence. If
element cards are omitted, the program automatically
generates the omitted information as follows:

The increment for element number is one

i.e. NEi+1 = NEi +1

The corresponding increment for nodal number is Kn

t.e. NI, =N +K
NI g = Ny + K
Nk = MKy K
NL,,, = NL, +K_

Material identification, element thickness, distributed
lateral load, temperature and temperature gradient for
generated elements are the same, Always include the
complete last element card.

1v.6.3

IV. ELEMENT DATA (continued)

(4) Element Stress Calculations

Output are moments per unit length and membrane stresses.

Iv.6.4

1V, ELEMENT DATA (continued)
//A':\\ B
“TYPE 7 - BOUNDARY ELEMENTS e

A

This element is used to constrain nodal displacements to specified
values, to compute support reactions and to provide linear elastic
supports to nodes. If the boundary condition code for a particular
degree of freedom is specified as 1 on the structure nodal point data
cards, the displacement corresponding to that degree of freedom is
zero and no support reactions are obtained with the printout. Alterna-
tively, a boundary element can be used to accomplish the same effect
except that support reactions are obtained since they are equal to the
member end forces of the boundary elements which are printed. In
addition the boundary element can be used to specify non-zero nodal
displacements in any direction which is not possible using the nodal
point data cards.

The boundary element is defined by a single directed axis through
a specified nodal point, by a linear extensional stiffness along the
axis Or by a linear rotational stiffness about the axis. The boundary
element is essentially a spring which can have axial displacement
stiffness and axial rotational stiffness. There is no limit to the
number of boundary elements which can be applied to any joint to produce
the desired effects. Boundary elements have no effect on the size of
the stiffness matrix.

INPUT DATA

A. Control Card (215)

- 5 The number 7.

Columns 1
6 - 10 Total number of boundary elements.

B. Element Load Multipliers (4Fl0.0)

Columns 1 - 10 Multiplier for load case
11 - 20 Multiplier for load case
21 - 30 Multiplier for load case
31 - 40 Multiplier for load case

o Om >

C. Element Cards (815,3Fl10.0)

One card per element (in ascending nodal point order) =xcept
where automatic element generation is used.

Columns 1 - 5 Node N, at which the element is placed
6 - 10 Node 1
11 - 15 Node J Leave columns 11 - 25 blank
16 - 20 Node K if only node I is needed.
21 - 25 Node L
26 - 30 Code for displacement
31 - 35 Code for rotation
36 - 40 Data generator K,
41 - 50 Specified displacement along element axis
51 - 60 Specified rotation about element axis
61 - 70 Spring stiffness (set to 1010 if left blank)
for both extension and rotation.

1v,7.1

IV, ELEMENT DATA (continued)

NOTES/

(1) Direction of boundary element

The direction of the boundary element at node N is specified
in one of two ways.

(1) A second nodal point I defines the direction of the
element from node N to node I,

(ii) Four nodal points I, J, K and L specify the direction
of the element as the normal to the plane defined by two
intersecting straight lines (vectors a and E, see Fig. below).

A0
b
L
|
J a
K
h=axb

ROTATIONAL CONSTRAINT
IN THIN SHELL ANALYSIS

The four points I, J, K and L need not be unique. A useful
application for the analysis of shallow thin shells employs
the boundary element to approximate rotational constraint
about the surface normal as shown above.

n is given by the vector cross product n = a X b and defines
the direction of the boundary element.

Note that node I in case (i) and nodes I, J, Kand L in case (ii) are
used only to define the direction of the element and if convenient may
be any nodes used to define other elements. However 'artificial nodes'
may be created to define directions of boundary elements, These
'artificial nodes' are input on the nodal point data cards

with their coordinates and with all the boundary condition codes
specified as 1 (one).

1v.7.2

IV, ELEMENT DATA (continued)

It should be noted that node N is the structure node to which the
boundary element is attached. In case (i), a positive displacement moves
node N towards node I. Correspondingly, a positive force in the element
means compression in the element. In case (ii), a positive displacement
moves node N into the direction n (see Fig.).

(2) Displacement and rotation codes

Displacement code = 1: When this code is used, the displacement
6, specified in columns 41-50, and the spring stiffness k, specified
in columns 61-70, are used by the program in the following way. The
load P, evaluated from P = k§, is applied to node N in the direction
node N to node I in case (i) and into direction n in case (ii), if 6
is positive. If k is much greater than the stiffness of the structure
at node N without the boundary element, then the net effect is to produce
a displacement very nearly equal to § at node N, If 6 = 0, then P =0
and the stiff spring approximates a rigid support. Note that the load
P will contribute to the support reaction for nonzero &§. The boundary
condition codes specified on the structure nodal point data cards must
be consistent with the fact that a load P is being applied to node N
to effect the desired displacement (even when this displacement is
zero).

Rotation code = 1: This case is analogous to the situation
described above. A torque T, evaluated from T = k @, is applied to node
N about the axis (direction) of the element. The rotation @ is specified
in c6lumns 51-60,.

(3) Data generator K

11

When a series of nodes are such that:

(i) All have identical boundary elements attached

(ii) All boundary elements have same direction

(iii)All specified displacements and rotations are identical

(iv) The nodal sequence forms an arithmetic sequence, i.e., N,
N + Kn, N + 2Kn etc.,

then only the first and last node in the sequence need be input. The
increment Kn is input in columns 36-40 of the first card.

Iv.7.3

IV. ELEMENT DATA (continued)

(4) Element load multipliers

Each of the four possible element load cases A, B, C and D
associated with the boundary elements consists of the complete set of
displacements as specified on the boundary element cards multiplied
by the element load multiplier for the corresponding load case. As
an example, suppose that displacement of node N is specified as 1.0,
spring stiffness as 1010 and no other boundary element displacements
are specified. Let case A multiplier be 0.0 and case B multiplier be
2.0. For element load case A the specified displacement is 0.0 x 1,0= 0.0
while that for B is 2.0 x 1.0 = 2.0, Linear combinations of element
load cases A, B, C and D for all tvpes of elements collectivelv for a
particular problem are specified on the structure element load multiplier
cards., As far as the boundary element is concerned, this device is
useful when a particular node has a support displacement in one load
case but is fixed in others.

(5) Recommendations for use of boundary elements

1f a boundary element is aligned with a global displacement
direction, only the corresponding diagonal element in the stiffness
matrix is modified. Therefore, no stiffness matrix ill-conditioning
results. However, when the boundary element couples degrees of
freedom, large off-diagonal elements introduce ill-conditioning into
the stiffness matrix which can cause solution difficulties,

In the analysis of shallow shells boundary elements with stiffness
a fraction of the element bending stiffness should be used (say less
than or about 10%).

In dynamic analysis "artificially stiff' boundary elements should
not be used. (See note (8) in Section VII.A).

1v.7.4

1V. ELEMENT DATA (continued)

TYPE 8 - VARIABLE-NUMBER-NODES THICK SHELL AND THREE-DIMENSIONAL ELEMENTS

A minimum of 8 and a maximum of 21 nodes are used to describe
a general three dimensional isoparametric element; the element is used
to represent orthotropic, elastic media. The element type is identified
by the number eight (8). Three translational degrees of freedom are
assigned to each node, and at least the eight corner nodes must be input
to define a hexahedron. Input of nodes 9 to 21 is optional; the figures
below illustrate some of the most commonly used node combinations.

Element load cases (A,B,C,...) are formed from combinations
of applied surface pressure, hydrostatic loads, inertia loads in the
three directions X,Y,Z and thermal loads. Six global stresses are
output at up to seven (7) locations within the element; these output
locations are selected by means of appropriate data entries.

Node temperatures input in Section III are used to form an
average element temperature which is the basis of material property
selection for the element. If thermal loads are applied, node tempera-
tures are used to establish the temperature field within the element,
and the temperature interpolation functions are the same as those
assumed to represent element displacements.

1. Control Card (1l0I5)

notes columns variable entry
5 Enter the number 8"
6 - 10 NSOL21 Number of solid elements; GE.1l
11 - 15 NUMMAT Number of different materials; GE.1
(D l6 - 20 MAXTP Maximum number of temperature points
used in the table for any material;
EQ.0; default set to "1"
(2) 21 - 25 NORTHO Number of different sets of material axis
orientation data;
EQ.0; all properties are defined in
the X,Y,Z, system

(3) 26 - 30 NDLS Number of different distributed load
(i.e., pressure) sets
4) 31 - 35 MAXNOD Maximum number of nodes used to describe

any one element;
GE.8 and LE.21
EQ.0; default set to "'21"

(5) 36 - 40 NOPSET Number of sets of data requesting stress
output at various element locations;
EQ.0; centroid output only

v.8.1

X

THREE DIMENSIONAL [ISOPARAMETRIC ELEMENT

1v.8.2

HEXAHEDRAL ELEMENT IN NATURAL COORDINATES

1v.8.3

a. 16 — NODE ELEMENT

b. 17— NODE ELEMENT

C. 20— NODE ELEMENT

COMMONLY USED ELEMENT GEOMETRIES

Iv.8.4

IVv. ELEMENT DATA (continued)

notes

(6)

NOTES/
1)

(2)

&))

(4)

)

1. Control Card (1015) (continued)

columns variable entry

41 - 45 INTRS Standard integration order for the natural

(r,s) directions;
GE.2 and LE.4
EQ.0; default set to '2"

46 - 50 INTT Standard integration order for the

natural (t)-direction;
GE.2 and LE.4
EQ.0; default set to "2"

The variable MAXTP limits the number of temperature points

that can be input for any one of the NUMMAT material sets;

i.e., the variable NTP in Section 2 cannot exceed the value
of MAXTP.

NORTHO specifies the number of cards to be read in Section 3,
and if omitted, all orthotropic material axes are assumed to
coincide with the global cartesian axes X,Y,Z.

NDLS specifies the number of card pairs to be read in
Section 4. NDLS must be a positive integer if any pressure
loads are to be applied to solid element faces.

MAXNOD specifies the maximum number of non-zero node numbers
assigned to any one of the NSOLZ21 elements input in Section 7.
Locations of the element's 21 possible nodes are shown in

the figure below in which the element is shown mapped into

its natural r,s,t coordinate system. The eight corner nodes
must be input for every element, and nodes 9 to 21 are input
optionally. 1If MAXNOD is 9 or greater, all 21 node entries
are read for each element (Cards 2 and 3, Section 7), but

only the first MAXNOD non-zero entries encountered when
reading in sequence from 1 to 21 will be used for element
description. As an example, for the 16-17- and 20-node elements
MAXNOD has values of 16, 17, 20, respectively.

As a means of controlling the amount of solution output,
stress output location sets are defined in Section 5, and the
total number of these output requests is specified by the
variable NOPSET. For the case of NOPSET.EQ.O, no data is
input in Section 5, and the only stress output produced by

the program is at the element centroid. Otherwise, stress
output can be requested at up to seven (7) locations (selected
from a table of 27 possible locations) by means of the data
entries given in Section 5.

1v.8.5

1v.

ELEMENT DATA (continued)

NOTES (continued)

(6) The entries INTRS and INTT control the number of integration
points to be used in numerical evaluation of integrals over volumes
in the (r,s) and (t)-coordinate directions, respectively.
When solid elements are used to represent shell structures,
the through-the-thickness integrations (i.e., in the natural
t-axis direction) can be evaluated less accurately than those
in-plane (i.e., in the r,s plane). For this case INTRS
might be 3 and INTT would be chosen typically as 2. The
entries INTRS and INTT are standard or reference values and
are used if the integration order entries on the element
cards (Card 1, Section 7) are omitted. Non-zero entries for
integration order(s) given on the element cards over-ride the
standard values posted on this card.

2. Material Property Cards

Orthotropic, temperature dependent material properties

are allowed. For each different material that is requested on the
Control Card, the following set of data must be supplied (i.e., NUMMAT
sets total) :

notes

1)

@)

a. Material identification card (215,2F10.0,6A6)

columns variable entry

l - 5 M Material identification number;
GE.l1 and LE.NUMMAT
6 - 10 NTP Number of different temperatures at
which properties are given;
LE .MAXTP
EQ.0; default set to "1"
11 - 20 WTDEN Weight density of the material used to
computed static gravity loads
21 - 30 MASSDN Mass density of the material used to
compute the mass matrix in a dynamic
analysis;
EQ.0; default set to "WIDEN/386.4"
31 - 66 Material description used to label the
output.

NOTES/

(1) Material numbers (M) must be input in ascending sequence
beginning with "1" and ending with "NUMMAT'": omissions or
repetitions are illegal.

(2) Weight density is used to compute static node forces due to
applied gravity loads: mass density is used to calculate
element mass matrices for use in connection with a dynamic
analysis.

IV.8.6

Iv. ELEMENT DATA (continued)

b. Material cards (7F10.0,6F10,0)

NTP pairs of cards are input in order of algebraically

increasing value of temperature-.

First Card
notes columns variable entry
1) 1 -10 Temperature, Tn
2) 11 - 20 Eyq at T,
21 - 30 Ezp at Tn
31 - 40 Eyg at T,
41 - 50 vz at T
51 - 60 viz at T
61 - 70 w3 at T,

Second Card

notes

NOTES/
1)

2)

columns variable entry

1 -10 G12 at

Tn
11 - 20 G5 at T,
21 - 30 Gz at T,
31 - 40 @ at T,
41 - 50 oy at T,
51 - 60 aq at T,

The 12 entries following the temperature value T, are physical
properties known at T,. When two or more temperature points
describe a material, interpolation based on average element
temperature is performed to establish a property set for the
element. Hence, the range of temperature points for a material
table must span the expected range of average element tempera-
tures for all elements associated with the material,

The 12 constants (Ell'Ezz""'oﬁ) are defined with respect
to a set of axes (xl,xz,xa) which are the principal material
directions for an orthotropic, elastic medium. The stress-
strain relations with respect to the (Xl,Xz,XS) system is
written as follows :

Iv.8.,7

IV. ELEMENT DATA (continued)

e,] [1/E1) -wg/Egp -v13/E33 0 0 0] EN

€20 “\w1/Eyy; 1/Epp -w3/Ezg 0 0 0 S92

€43) —\»Sl/E11 -»52/E22 1/Eq3 © 0 0 Oaq

Y, i 0 0 0 1/G50 0 g

Yog 0 0 0 0 1/Gy, O Tys

\(3 1] i 0 0 0 0 0 1/013 3314
T

- [ﬂTal ATaé ATob 0 0 0]

where ¢, . and o;i are normal strains and stresses in the

Xy direc%ions; Yij and Tij are shear strains and stresses on

the principal material planes; a; are the coefficients of thermal
expansion, and AT is the increase in temperature from stress free
distributed over the element volume.

3. Material Axes Orientation Sets (415)

If NORTHO is zero on the Control Card, skip this data
section, and all material axes (xl,xz,xs) will be assumed to coincide
with the global cartesian system X,Y,Z. Otherwise, NORTHO cards must
be input as follows:

notes columns variable entry

¢ l- 5 M Identification number;
GE.l and LE.NORTHO
(2) 6 - 10 NI Node number for point "i"
11 - 15 NJ Node number for point 'j"
16 - 20 NK Node number for point "k
NOTES/

(1) Identification numbers (M) must be input in increasing
sequence beginning with "1'" and ending with "NORTHO'.

(2) Orthotropic material axes orientations are specified by
means of the three node numbers NI,NJ,NK. For the special
case where orthotropic material axes coincide with the global
axes (X,Y,2), it is not necessary to input data in this
section; see Section 7, note (4). Let 21,22,23 be the three
orthogonal vectors which define the axes of material orthotropy,
then their directions are as shown below:

Iv.8.8

IV. ELEMENT DATA (continued)

-
21 = 1

o)
f, = 1j x ik
=3
1,7 3%5

Node numbers NI,NJ,NK are only used to locate points i, j,k,
respectively, and any convenient nodes may be used.

4. Distributed Surface Load Data

NDLS pairs of cards are to be input in this section in
order of increasing set number (N). These data describe surface loads
acting on element faces and may be prescribed directly in terms of
face corner node pressures or indirectly by means of a hydrostatic
pressure field.

a. Control Card (315)

notes columns variable entry

(1) l - 5 N Load set identification number;
GE.l and LE.NDLS
(2) 6 - 10 NFACE Element face number on which this

distributed load is acting;
GE.1 and LE.6

3) 11 - 15 LT Load type code;
EQ.1; prescribed normal pressure
intensities
EQ.2; hydrostatically varying pressure
field

EQ.0; default set to 1"

1v.8.9

IV. ELEMENT DATA (continued)

NOTES/
9]

(2)

3)

FACE
NUMBER

bW

notes

1)
(2)

NATURAL CORNER NODE NUMBERS

COORDINATES N1 N2 N3 N4
(+#1, s, t) 1 4 8 5
(-1, s, t) 2 3 7 6
(r,+1, t) 1 5 6 2
(r,-1, t) 4 8 7 3
(r, s,+1) 1 2 3 4
(r, s,-1) 5 6 7 8

TABLE Corner Node Numbers for the Solid Element Faces

columns variable entry

21

31

The surface load data sets established in this section are
assigned to the elements in Section 7.

Hexahedra have six quadrilateral faces each uniquely described
by four node numbers at the corners of the face. The face
number convention established for elements is given in the
Table below.

Two types of surface pressure loads may be applied to faces
of the elements. 1If LT.EQ.0 (or 1), a normal pressure
distribution is prescribed directly by means of pressure
intensities at the face corner nodes. 1If LT.EQ.2, the

face is exposed to hydrostatic pressure due to fluid head.

b. Normal Pressure Data (4Fl10.0) (LT.EQ.1l, only)

- 10 Pl Pressure at face node Ny

- 20 P2 Pressure at face node N2;
EQ.0; default set to 'P1"

- 30 P3 Pressure at face node N3;
EQ.0; default set to "P1"

- 40 P4 Pressure at face node N4;

EQ.0; default set to

1v.8.10

IV. ELEMENT DATA (continued)

NOTES/

1)

2)

The pressure distribution acting on an element face is
defined by specifying intensities P1,P2,P3,P4 at the face
corner nodes as shown below:

The face corner node numbers are given in the Table
and positive pressure tends to compress the volume of
the element.

The variation of pressure over the element face, p(a,b),
is given as:

p (a,b) = Plxh1 + P2xh2 + P3xh3 + P4xh4

where
= (1/4) (1+a) (1+b)
= (1/4) (l-a) (1+4b)
(1-a) (1-b)
= (1/4) (1+a) (1-b)

[= e i~ g =
WD
|
—~
—
~N
=N
~

in quadrilateral natural face coordinates (a,b).

If any of the entries P2,P3,P4 are omitted, these values
are re-set to the value of Pl; i.e., for a uniformly dis-
tributed pressure (p), we have Pl.EQ.p and cc 11-40 blank.
I1f P2 is zero specify a small number.

1v.8.11

IV. ELEMENT DATA (continued)

notes co

1) 1

2) 11

21

31

41

51

61

NOTES/
1

@)

€. Hydrostatic Pressure Data (7F10.0) (LT.EQ.Z2, only)

lumns variable entry

- 10 GAMMA Weight density of the fluid, v;
GT.O

- 20 XS X-ordinate of point s in the free surface
of the fluid

- 30 YS Y-ordinate of point s in the free surface
of the fluid

- 40 VA Z2-ordinate of point s in the free surface
of the fluid

- 50 XN X-ordinate of a point n on the normal
to the fluid surface

- 60 YN Y-ordinate of a point n on the normal
to the fluid surface

- 70 ZN Z-ordinate of a point n on the normal

to the fluid surface

GAMMA is the weight density (i.e., units of force per unit

of fluid volume) of the fluid in contact with element face
number NFACE.

Point "s" is any point in the free surface of the fluid,

and point "n" is located such that the direction from s to

n is normal to the free surface and is positive with increasing

depth,

1v.8.12

1V. ELEMENT DATA (continued)

Hydrostatic pressure in contact with an element face causes
element compression; i.e., pressure resultant acts toward the
element centroid. Nodes located above the fluid surface are
automatically assigned zero pressure intensities if an element
face is not (or only partially) submerged in the fluid.

5.

Stress Output Request Location Sets (715)

If NOPSET is zero on the Control Card, skip this section,

and global stresses will be computed and output at the element centroid
only. Otherwise, NOPSET cards must be input as follows:

notes

1)

NOTES/

(1)

fraction
fraction

11 - 15 LOC3 Location number of output point
16
21
26
31 - 35 LoC7 Location number of output point

column variable entry

l - 5 Locl Location number of output point
6 - 10 LOC2 Location number of output point

20 Loc4 Location number of output point
35 LOCS Location number of output point
30 LOC6 Location number of output point

i

AR W

LE. 27

27 element locations are assigned numbers as shown in the
Figure below. Locations 1 to 21 correspond to node numbers
1 to 21, respectively. Locations 22 to 27 are element face
centroids. The first zero (or blank) entry on a location
card terminates reading of location numbers for the output
set; hence, fewer than seven locations can be requested in
an output set. Location numbers must be input in order of
increasing magnitude; i.e., LOC2 is greater than LOCl, LOC3
is greater than LOC2, etc. In dynamic analysis, FACE 1,

FACE 2,..., FACE 6 correspond to output locations 22,23,...,27
respectively. (See Table VII.1).

Element Load Case Multipliers

Five (5) cards must be input in this section specifying the
of gravity (X,Y,Z), the fraction of thermal loads and the
of pressure loads to be added to each of the element loading

combinations (A,B,...). Load case multiplier data affect static

analysis
Card 1
notes

1)

calculations only.

X-direction gravity (4Fl10.0)

columns variable entry

1l - 10 GXA Fraction of X-direction gravity to be
applied in element load case A

31 - 40 GXD Fraction of X-direction gravity to be

applied in element load tase D

1v.8.13

ez

ELEMENT STRESS OUTPUT LOCATION NUMBERS

Iv.8.14

1V. ELEMENT DATA (continued)

Card 2 Y-direction gravity (4Fl10.0)
Card 3 Z-direction gravity (4F10.0)
Card 4 Thermal loads (4F10.0)
notes columns variable entry

(2) 1 -10 TA Fraction of thermal loads to be applied
in element load case A

31 - 40 TD Fraction of thermal loads to be applied
in element load case D

Card 5 Pressure loads (4F10.0)
notes columns variable entry

(3) 1 -10 PA Fraction of pressure loads to be applied
in element load case A

31 - 40 PD Fraction of pressure loads to be applied
in element load case D
NOTES

(1) Gravity loads on the structure due to static body forces
are computed from the weight density of element materials
and the element geometry. These loads are assigned to the
element load combinations by means of the entries on
Cards 1,2 and 3 for forces in the X,Y,2 directions,
respectively.

(2) Thermal loads are computed knowing the node temperatures
input in Section 111, the stress free reference temperature
(T,) input in Section 7 and the element's material properties
and node coordinates. The temperature distribution within
the element is described using the same interpolation func-
tions which describe the variation of displacements within
the element.

(3) Pressure loads are first assigned to element load cases
(A,B,...) by means of the entries (scale factors) on Card 35,
and the distributed load sets which were input in Section 4
are then applied to the elements individually for cases
(A,B....) by means of load set references given in Section 7.

7. Element Cards

Two cards (if MAXNOD.EQ.8) or three cards (if MAXNOD.GT.8)
must be prepared for each element that appears in the input, and the

1v.8.15

1V. ELEMENT DATA (continued)
format for these cards is as follows:
Card 1 (615,F10,,415,412)

notes columns variable entry

69) l- 5 M Element number;
GE.l and LE.NSOL21
2) 6 - 10 NDIS Number of nodes to be used in describing

the element's displacement field;
EQ.0; default set to ''MAXNOD"
(3) 11 - 15 NXYZ Number of nodes to be used in the description
of element geometry;
EQ.0; default set to "NDIS"
EQ.NDIS - isoparametric element
LT.NDIS -+ subparametric element

16 - 20 NMAT Material identification number;
GE.l and LE.NUMMAT

4) 21 - 35 MAXES Identification number of the material
axis orientation set;
GE.l and LE.NORTHO
EQ.0; material axes default to the
global X,Y,Z system
(3) 26 - 30 I0P Identification number of the stress output
location set;
GE.l and LE,NOPSET
EQ.0; centroid output only

31 - 40 TZ Stress free reference temperature, T
(6) 41 - 45 KG Node number increment for element data
generation;
EQ.0; default set to "1"
46 - 50 NRSINT Integration order for natural coordinate

(r,s) directions;
EQ.0; default set to "INTRS"
51 - 55 NTINT Integration order for natural coordinate

(t) direction;
EQ.0; default set to "INTT"

(7) 56 - 60 IREUSE Flag indicating that the stiffness and
mass matrices for this element are the
same as those for the preceding element;

EQ.0; no
EQ.1l; yes
(8) 61 - 62 LsA Pressure set for element load case A
63 - 64 LSB Pressure set for element load case B
65 - 66 LSC Pressure set for element load case C
67 - 68 LSD Pressure set for element load case D;
LE .NDLS

Iv.8.16

IV. ELEMENT DATA (continued)
Card 2 (1615)

notes columns variable entry

(9) 1 -5 Node 1 number
6 - 10 Node 2 number

11 - 15 Node 3 number

16 - 20 Node 4 number

21 - 25 Node 5 number

26 - 30 Node 6 number

31 - 35 Node 7 number

36 - 40 Node 8 number

(10) 41 - 45 Node 9 number
46 - 50 Node 10 number

51 - 55 Node 11 number

56 - 60 Node 12 number

61 - 65 Node 13 number

66 - 70 Node 14 number

71 - 75 Node 15 number

76 - 80 Node 16 number

Card 3 (515) (required if MAXNOD.GT.8)

note columns variable entry
1 - 5 Node 17 number
6 - 10 Node 18 number
11 - 15 Node 19 number
16 - 20 Node 20 number
21 - 25 Node 21 number
NOTES /

(1) Element cards must be input in ascending element number

order beginning with "1" and ending with "NSOL21". Repetition
of element numbers is illegal, but element cards may be
omitted, and missing element data are generated according

to the procedure described in note (7).

(2) NDIS is a count of the node numbers actually posted on
Cards 2 and 3 which must immediately follow Card 1.
NDIS must be at least eight (8), but must be less than
or equal to the limit (MAXNOD) which was given on the
Control Card, Section 1. Element displacements are
assigned at the NDIS non-zero nodes, and thus, the
order of the element matrices is three (i.e., trans-
lations X,Y,Z) times NDIS. The eight corner nodes of
the hexahedron must be input, but nodes 9 to 21 are
optional, and any or all of these optional nodes may
be used to describe the element's displacement field.

1v.8.17

1V, ELEMENT DATA (continued)

(3) When element edges are straight it is unnecessary
computationally to include side nodes in the numerical
evaluation of coordinate derivatives, the Jacobian
matrix, etc., and since regular element shapes are
common, an option has been included to use fewer nodes
in these geometric calculations than are used to
describe element displacements. The first NXYZ non-
zero nodes posted on Cards 2 and 3 are used to evaluate
those parameters which pertain to element geometry
only. NXYZ must be at least eight (8), and if omitted
is re-set to NDIS. A common application might be a
20 node element (i.e., NDIS.EQ.20) with straight edges

1" "

in which case NXYZ would be entered as 8 .

(4) MAXES (unless omitted) refers to one of the material
axes set defined in Section 3. If omitted, the
material (NMAT) orientation is such that the (Xl,Xz,XB)
axes coincide with the (X,Y,Z) axes, respectively.

(5) IOP (unless omitted) refers to one of the output location
sets given in Section 5. If IOP.EQ.O, stress output is
quoted at the element centroid only, Stress output at
a point consists of three normal and three shear
components referenced to the global (X,Y,Z) axes.

(6) When element cards are omitted, element data are generated
automatically as follows:

(a) all data on Card 1 for generated elements
is taken to be the same as that given on
the first element card in the sequence;

(b) non-zero node numbers (given on Cards 2 and
3 for the first element) are incremented by
the value "KG'" (which is given on Card 1 of
the first element) as element generation
progresses; zero (or blank) node number en-
tries are generated as zeroes,

The last element cannot be generated.

(7) The flag IREUSE allows the program to bypass stiffness
and mass matrix calculations providing the current
element is identical to the preceding element; i.e.,
the preceding and current elements are identical except
for a rigid body translation. If IREUSE.EQ.0, new
matrices are computed for the current element.

If IREUSE.EQ.l it is also assumed that the node
temperatures of the element (for calculation of thermal
loads) are the same as those of the preceding element.

Iv.8.18

Iv.

ELEMENT DATA (continued)

(8)

(9

(10)

Pressure loads are assigned (i.e., applied) to the
element by means of load set references in cc 61-62
for combination A, cc 63-64 for B, etc. A zero entry
means that no pressure acts on the element for that
particular element load combination.

The first eight node numbers establish the corners or
vertices of a general hexahedron and must be all non-
zero, (see Figure in Section 1 on control cards), Node
numbers must be input in the sequence indicated otherwise
volume and surface area integrations will be indefinite.

The number of cards required as input for each element
depends on the variable MAXNOD. For the case of
MAXNOD.EQ.8, only Card 2 is required. 1If MAXNOD.GT.8,
Cards 2 and 3 are required for all elements.

Nodes 9 to 21 are optional, and only those nodes actually
used to describe the element are input. The program

will read all 21 entries if MAXNOD was given as 9 or
greater, but only NDIS non-zero values are expected

to be read on Cards 2 and 3. If for example one element
is described by 10 nodes, then cc 1-40 on Card 2 would be
the eight corner node numbers, and the remaining two

node numbers would be posted somewhere on Cards 2 and 3.

Iv.8.19

IV, ELEMENT DATA (continued)

TYPE 9 - THREE-DIMENSIONAL STRAIGHT OR CURVED ,PIPE ELEMENTS

Pipe elements are identified by the number twelve (12). Axial
and shear forces, torque and bending moments are calculated for each
member, Gravity loadings in the global (X,Y,2) directions, uniform
temperature changes (computed from input nodal temperatures), and
extensional effects due to internal pressure form the basic member
loading conditions. Pipe element input is described by thz following
sequence of cards:

1. Control Card (1415)

notes columns variable entry
4 - 5 Enter the number "12"
(1) 6 - 10 NPIPE Number of pipe elements
11 - 15 NUMMAT Number of material sets
16 - 20 MAXTP Maximum number of temperature points
used in the table for any material
GE.1l; at least one point
21 - 25 NSECT Number of section property sets; GE.1l
2) 26 - 30 NBRP Number of branch point nodes at which
output is required;
EQ.O0; no branch point ocutput is
produced
31 - 35 MAXTAN Maximum number of tangent elements
common to any one branch point node;
EQ.O; default set to ''4"
36 - 40 NPAR(8) Blank
41 - 45 NPAR(9) Tangent stiffness load matrix dump flag

FQ.1l; Print
EQ.0; Suppress printing

46 - 50 NPAR(10) Bend stiffness load matrix dump flag
EQ.1l; Print
EQ.0; Suppress printing

51 - 55 NPAR(11) Element parameters dump flag
EQ.1; Print
EQ.0; Suppress printing

NOTES/

(1) The number of pipe elements (''NPIPE') counts both tangent
and bend geometries, and both the material and section
property tables can reference either the bend or tangent
element types.

(2) A branch point is defined as a nodal location where at
least three (3) tangent pipe elements connect. The two
input parameters "NBRP" and ''MAXTAN'' reserve storage for
an index array created during the processing of pipe
element data; posting a larger number of maximum common
tangents than actually exist is not considered a fatal error
condition, Branch point data is read if requested, but not
currently used; i.e. to be used in future program versions.

1v.9.1

IV, ELEMENT DATA (continued)

2. Material Property Cards

Temperature-dependent Young's modulus (E), Poisson's ratio
(V) and thermal expansion coefficient (a) are allowed. If more than
one (1) temperature point is input for a material table, then the program
selects properties using linear interpolation between input temperature
values, The temperature used for property selection is the average
element temperature which is denoted as Ta:

T = (T, +T.))/2
a i J

where T; and T; are the input nodal temperatures for ends "i'" and "j"
of the pipe., For each different material, the following set of cards
must be input:

a. material identification card (215,6A6)

notes columns variable entry
(1) 1 - 5 M Material identification number;
GE.l and LE.NUMMAT
6 - 10 NT Number of different temperatures at
which properties are given;
! EQ.O; one temperature point is
assumed to be input
11 - 46 Material description used to label

the output for this material
NOTES/

", n

(1) Material identification number must be input between one (1)
and the total number of materials specified ('NUMMAT')

b. material cards (4F10.0)

notes columns variable entry
(1) 1 - 10 T (N) Temperature, T,
11 - 20 E(N) Young's modulus, E,
21 - 30 XNU(N) Poisson's ratio,
31 - 40 ALP(N) Thermal expansion coefficient, o,
NOTES/

(1) Supply one card for each temperature point in the material
table; at least one card is required. Temperatures must
be input in increasing (algebraic) order. If two or more
points are used, care must be taken to insure that the table
covers the expected range of average temperatures existing
in the elements to which the material table is assigned.

1v.9.2

IV, ELEMENT DATA (continued)

3. Section Property Cards (I15,5F10.0,3A6)

notes columns variable entry
1) 1 - 5 N Section property identification number;
GE.l and LE,NSECT
2) 6 - 15 Outside diameter of the pipe, dg,
16 - 25 Pipe wall thickness, t
26 - 35 Shape factor for shear distortion, o,
(3) 36 - 45 Weight per unit length of section, Yy
(1) 46 ~ 55 Mass per unit length of section, Pl
56 - 73 Section description (used to label the
output)
NOTES/

(1) Section property identification numbers must be input in an
ascending sequence beginning with one ("1") and ending with
the total number of section specified ('NSECT").

(2) Assuming that (y,z) are the section axes and that the x-axis
is normal to the section, the properties for the section are

compuled from the input parameters [do, t and a&] as follows:

(a) inner and outer pipe radii;

r, = do/2
r =r -t
i o
(b) cross-sectional area (axial deformations) ;
2 2

Ax = n(r0 - ri)

(c) principal moments of inertia (bending);

1 (r’4) (rz - r?)

y

I =1
2 y

(d) polar moment of inertia (torsion);

(e) effective shear areas (shear distortions) ;
A = A/«
y X v

A =A
z y

Note that the shape factor for shear distortion (o) may
be input directly. If the entry is omitted, the shape
factor is computed using the equation:
X 3 3.,,. 2 2
@, = (4'3) (r) - ri)/[\ro + ri) (r - ri)]

= 2.0

1v.9.3

[

IV. ELEMENT DATA (continued)

An input value for @, greater than one hundred (100.)
causes the program to neglect shear distortions entirely,
1f used, the same shape factor is applied to both in and
out-of-plane shear distortions.

(3) The weight per unit length of section (Y1) is used to
compute gravity loadings on the elements. Fixed end
shears, moments, torques, etc. are computed automatically
and applied as equivalent nodal loads. These forces will
not act on the structure unless first assigned to one of
the element load cases (A,B,C,D) in Section IV.L.5, below.

(4) The mass per unit length is only used to form the lumped
mass matrix for a dynamic analysis case. If no entry is
input, then the program will re-define the mass density
from the weight density using:

p = 'Yl/386.4

Either a non-zero weight density or mass density will
cause the program to assign masses to all pipe element
nodes.

4, Branch Point Node Numbers

If the number of output branch point nodes has been
omitted from the control card (i.e., cc 26-30 blank), skip this section
of input, and no branch point data will be read. Otherwise, supply
node numbers for a total number of branch points reguested on the
control card, ten (10) nodes per card:

first card (1015)

notes columns variable entry
(1) 1 - 5 Node number at branch point 1
6 - 10 : Node number at branch point 2
45 - 50 Node number at branch point 10
second card (1015) -- if required
notes columns variable entry
1 - 5 Node number at branch point 11

NOTES.

(1) A node does not define a branch point unless at least three (3)
tangent elements are common to the node. Branch point output
is only produced for static analysis cases.

IV.9.4

IV. ELEMENT

the fraction
the fraction

loading combinations (A,B,C,D).

Card 1

notes

@)

Card 2

Card 3

Card 4

notes

(2)

Card S

notes

3

5.

DATA (continued)

Element Load Case Multipliers

Five (58) cards must be input in this section specifying
of gravity (in each of the X,Y,Z2 coordinate directions),
of thermal loading and the fraction of internal pipe
pressure loading to be added to each of four (4) possible element

X-direction gravity

columns

1 - 10
11 - 20
21 - 30
31 - 40

variable

Y-direction gravity

Z-direction gravity

Thermal loads

columns

1 - 10
11 - 20
21 - 30
31 - 40
Internal
columns

1 - 10
11 - 20
21 - 30
31 - 40

variable

pressure

variable

(4F10.0)
entry

Fraction of X-direction gravity
applied in element load case A
Fraction of X-direction gravity
applied in element load case B
Fraction of X-direction gravity
applied in element load case C
Fraction of X-direction gravity
applied in element load case D

(4F10.0)
(4F10.0)
(4F10.0)

entry

to

to

to

Fraction of thermal loading to be

applied in element load case A

Fraction of thermal loading to be

applied in element load case B

Fraction of thermal loading to be

applied in element load case C

Fraction of thermal loading to be

applied in element load case D
(4F10.0)

entry

be

be

be

be

Fraction of pressure-induced loading

applied in element load case A

Fraction of pressure-induced loading

applied in element load case B

Fraction of pressure -induced loading

applied in element load case C

Fraction of pressure-induced loading

applied in element load case D

1v,.9.5

Y (VERTICAL)

2 AX VERTICAL PLANE

GLOBAL AXES |

it ,

NON-VERTICAL TANGENT
IN LOCAL AXES

i r4
Y éPARALLEL TO GLOBAL Z-AXIS

VERTICAL TANGENT

CENTER OF
CURVATURE

TANGENT INTERSECTION

LOCAL COORDINATE SYSTEMS FOR
PIPE ELEMENTS

IV.9.6

Iv,

NOTES

notes

(1)

2)
(3)
(1)

ELEMENT DATA (continued)

(1)

2)

(3)

5. Element load Case Multipliers (continued)

No gravity loads will be produced if the weight per
unit length was input as zero on all section property
cards., Otherwise, a multiplier of 1.0 input for an
element load case means that 100% of deadweight will
be assigned to that load combination,

No thermal loading will result if the coefficient of
thermal expansion has been omitted from all the material
cards. Otherwise, thermal loads are computed for each
element using the AT between the average element tempera-
ture (Ta) and the stress-free temperature (Ty) given

with each pipe element card (Section IV.L.6, below).

Element distortions are computed for each element due
to internal pressure, and these loads are combined into
element load cases by means of appropriate non-zcro
entries in Card 5,

Gravity, thermal or pressure induced loads cannot act
on the structure unless first combined in one or more
of the element load sets (A,B,C,D). Once defined,
element load cases are assigned (via scale factors)
to the structure load cases by means of Element Load
Multipliers given in Section VI, An element load
case combination may be used a multiple number of
times when defining the various structure loading
conditions,

6. Pipe Element Cards

a. card type 1l

columns variable entry
1 - 4 N Pipe element number;
GE.l and LE.NPIPE
5 Geometric type code:

T (or blank); tangent section
" " .
; bend (circular) section

6 - 10 I Node I number

11 - 15 J Node J number

16 - 20 MAT Material identification number:
GE.l and LE.NUMMAT

21 - 25 ISECT Section property identification number;
GE.l and LE,NSECT

26 - 35 Stress~free temperature, T,

36 - 45 Internal pressure, p

46 - 55 Positive projection of a local y-

vector on the global X-axis; A(yX)

Iv.,9.7

IV. ELEMENT DATA (continued)

notes

(5)

NOTES/

1)

(2)

3

6. Pipe Element Cards (continued)

columns variable entry

56 - 65 Positive projection of a local y-
vector on the global Y-axis; A(yY)

66 - 75 Positive projection of a local y-
vector on the global Z-axis A (yZ)

76 - 80 KG Node number increment for tangent

element generation;
EQ.0; default set to "'1"

Card type 1 is used for both tangent and bend elements;

a second card (card type 2, below) must be input immedi-
ately following card type 1 if the pipe element is a

bend (i.e., "B" in cc 5). Note that element cards must

be input in ascending sequence beginning with one (''1")
and ending with the total number of pipe elements.

If tangent elements are omitted, generation of the
intermediate elements will occur; the generation algorithm
is described below. An attempt to generate bend type
elements is considered to be an error.

The stress-free temperature, TO, is subtracted from
the average element temperature, T,, to compute the
uniform temperature difference acting on the element:

AT = Ta - To
The entire element is assumed to be at this uniform
value of temperature difference.

The value of pressure is used to compute a set of
sélf—equilibrating joint forces arising from member
distortions due to pressurization; i.e., the mechanical
equivalent of thermal loads. For bend elements, the pressure
is also used to compute the bend flexibility factor, k_. The
curved pipe subjected to bending is more flexible than ele-
mentary beam theory would predict. The ratio of "actual”
flexibility to that predicted by beam theory is denoted by kp,
where .

(1.65/0)/[1 + (6p/Eh) (R/6)/3]1 = 1

k =
o)
in which
.2
h = tR/r
r = (d - t)//z
o

I1v.9.8

Iv, ELEMENT DATA (continued)

6.

(4)

(5)

Pipe Element Cards (continued)

and
t = pipe wall thickness
R = radius of the circular bend
r = mean radius of the pipe cross section
d, = outside diameter of the pipe
E = Young's modulus
p = internal pressure

The flexibility factor is computed and applied to all
bend elements; pressure stiffening is neglected if the
entry for internal pressure ('p'') is omitted.

The global projections of the local y-axis for a tangent
member may be omitted (cc 46-75 blank); for this case,

the following convention for the local system is assumed:

(a) tangents parallel to the global Y-axis
(vertical axis) have their local y-axes
directed parallel to and in the same direc-
tion as the global Z~axis;

(b) tangents not parallel to the global Y-axis
have their local y-axes contained in a vertical
(global) plane such that local y projects
positively on the positive global Y-axis.

For bend elements, the global projections of the local
y-axis are not used; instead, the local axis convention
is defined as follows:

(a) the local y-axis is directed positively toward
and intersects the center of curvature of the
bend (i.e., radius vector);

(b) the local x-axis is tangent to the arc of the
bend and is directed positively from node 1
to node J.

Note. that for all elements, the local x, y, z system
is a right-handed set (see figure),

If a tangent element sequence exists such that each
element number (NE;) is one (1) greater than the pre-
vious number (NEj_j); i.e.,

NE. = NE, + 1
i i-1

only the element card for the first tangent in the

1v.9.9

1v,

notes

(1)
2)

ELEMENT DATA (continued)

6.

Pipe Element Cards (continued)

series need be input. The node numbers for the missing
tangents are computed using the formulae:

= +
NI, = NI._, +KG

NJ, = NJ, + KG
i i-1

where "KG" is the node number increment input in
cc 76-80 for the first element in the series, and
the

(a) material identification number

(b) section property identification number
(c) stress-free temperature

(d) internal pressure

(e) y-axis global projections

for each tangent in the generation sequence are taken to
be the same as those input on the first card in the
series. The node number increment (''KG') is reset to one
(1) if left blank on the first card in the series. The
last (highest) element cannot be generated; i.e., it must
be input.

Bend element data cannot be generated because two input
cards are required for each bend. Also, the element

just prior to a bend element must appear on an input
card. Several bends may be input in a sequence, but

each bend must appear (on two cards) in the input stream,

b. card type 2 (Fl10.0,3X,A2,4Fl10.0)

columns variable entry
1 -10 R Radius of the bend element, R
14 - 15 Third point type code:

TI (or blank); third point is the
tangent intersection point

rn 1

cC ; third point is the
center of curvature
16 - 25 X-ordinate of the third point, X3
26 - 35 Y-ordinate of the third point, Yj
36 ~ 45 Z-ordinate of the third point, Zj
46 - 55 Fraction of wall thickness to be

used for dimensional tolerance tests;

EQ.O; default set to "0.,1"

1v.9.10

y xa’.
(j)
i Py
4"’ z
v
A

P(i)
X TANGENT
END i z

FORCE SIGN CONVENTION FOR PIPE
ELEMENT OUTPUT

1v.9.11

IV, ELEMENT DATA (continued)

6. Pipe Element Cards (continued)

NOTES/

(1) The radius of the bend ('R") must be input regardless
of the method ("T1" or "CC") used to define the third
point for the bend.

(2) 1If the tangent intersection point is used, the program
computes a radius for the bend and compares the compu-
ted value with the input radius. An error condition
is declared if the two radii are different by more
than the specified fraction (or multiple) of the
section wall thickness. The lengths of the two
tangent lines (I to TI and J to TI) are compared for
equality, and an error will be flagged if the two
values are discrepant by more than the dimensional
tolerance.

If the center of curvature is input, the distances
from the third point to nodes I and J are compared
to the input radius; discrepancies larger than the
user defined tolerance are noted as errors.

This second element card is only to be input for the
bend type element.

Element Stress Qutput

Stress output for pipe elements consists of forces and moments
acting in the member cross sections at the ends of each member and
at the midpoints of the arcs in bend elements. Output quantitites
act on the element segment connecting the particular output station
and end i; i.e., j to i, center to i, or AX to i (where AX -+ 0).
Fuositive force/moment vectors are directed into the positive local
(x,v,z) directions, as shown in the accompanying figure.

1v.9.12

V. CONCENTRATED LOAD/MASS DATA (215,6F10.4)

notes

1)
(2)

NOTES/

1)

! 1».,'1”;,'

VoL rnLg

¥

4

columns variable entry
1 - 5 N Nodal point number
6 - 10 L Structure load case number;
GE.1l; static analysis
EQ.O; dynamic analysis
11 - 20 FX(N,L) X-direction force (or translational
mass coefficient)
21 - 30 FY (N,L) Y-direction force (or translational
mass coefficient)
31 - 40 FZ(N,L) 7Z-direction force (or translational
mass coefficient)
41 - 50 MX (N, L) X-axis moment (or rotational inertia)
51 - 60 MY (N, L) Y-axis moment (or rotational inertia)
61 - 70 MZ (N, L) Z-axis moment (or rotational inertia)

For a static analysis case (NDYN.EQ.0), one card is required

for each nodal point ("N'") having applied (non-zero) concentrated
forces or moments. All structure load cases must be

grouped together for the node ("N'") before data is entered

for the next (higher) node at which loads are applied. Only
the structure load cases for which node N is loaded need be
given, but the structure load case numbers ('L") which are
referenced must be supplied in ascending order. Node loadings
must be defined (input) in increasing node number order, but
again, only those nodes actually loaded are required as input.
The static loads defined in this section act on the structure
exactly as input and are not scaled, factored, etc. by the
element load case (A,B,C,D) multipliers (Section VI, below).
Nodal forces arising from element loadings are combined
(additively) with any concentrated loads given in this
section. Applied force/moment vectors act on the structure,
positive in the positive global directions. Only one card

is allowed per node per load case.

For a dynamic analysis case (NDYN.EQ.1l,2, 3 or 4), structure
load cases have no meaning, but the program expects to read
data in this section nonetheless. In place of concentrated
loads, lumped mass coefficients for the nodal degrees of
freedom may be input for any (or all) nodes. The mass matrix
is automatically constructed by the program from element
geometry and associated material densities; the mass coefficients
read in this section are combined (additively) with the exist-
ing element-based lumped mass matrix. For mass input, a node
may only be specified once, and the load case number 'L
must be zero (or blank).

V. CONCENTRATED LOAD/MASS DATA (215,6F10.4) (continued)

2)

The program terminates reading loads (or mass) data when
a zero (or blank) node number (''N'') is encountered; i.e.,
terminate this section of input with a blank card.

For the special case of a stati¢ analysis with no
concentrated loads applied, input only one (1) blank
card in this section. Similarly, a dynamic analysis

in which the mass matrix is not to be augmented by any
entries in this section requires only one (1) blank

card as input,

For a static analysis, structure load case numbers

range from 1" to the total number of load cases
requested on the Master Control Card ("LL"); thus,

1 <L < LL, NDYN.EQ.0. For a dynamic analysis, only zero
(0) references are allowed; thus, L = 0, NDYN.EQ.1,2

3, or 4.

——.

VI. ELEMENT LOAD MULTIPLIERS (4F10.0) —, i /g zig}uiTFj

notes

1,2)

NOTES,

1)

(2)

columns variable entry

1 -10 EM(1) Multiplier for element load casc A
11 - 20 EM (2) Multiplier for element load case B
21 - 30 EM(3) Multiplier for element load case C
31 - 40 EM(4) Multiplier for element load case D

One card must be given for each static (NDYN.EQ,0) structure
load case requested on the Master Control Card ("LL"). The
cards must reference load case numbers in ascending order.

The four (4) element load sets (A,B,C,D),if created during

the processing of element data (Section 1V, above), are
combined with any concentrated loads specified in Section V
for the structure load cases. For example, suppose an analysis
case calls for seven (7) static structure loading conditions
(i.e., LL = 7), then the program expects to read seven (7)
cards in this section. Further, suppose card number three (3)
in this section contains the entries:

[EM(1),EM(2) ,EM(3) ,EM(4)] = [-3.0,0.0,2.0,0.0]

Structure load case three (3) will then be constructed
using 100% of any concentrated loads specified in

Section V minus (-) 300% of the loads in element set A plus
(+) 200% of the loads in element set C. Load sets B and D
will not be applied in structure load case 3. Element load
sets may be referenced any number of times in order to
construct different structure loading conditions. Element-
based loads (gravity, thermal, etc.) can only be applied to
the structure by means of the data entries in this section.

I1f this case calls for dne of the dynamic analysis options,
supply only one blank card in this section. If the job is

a dynamic re-start case (NDYN.EQ.-2 or -3), skip this section.

Static analysis input is complete with this section., Begin
a new data case with a new Heading Card (see Section 1),

VI.1

VII. DYNAMIC ANALYSES

Four (4) types of dynamic analysis can be performed by the program.
The type of analysis is indicated by the number "NDYN'" specified in card
columns 21-25 of the Master Control Card (Section II). 1If

NDYN.EQ.1; Determination of system mode shapes and
frequencies only
(complete input Section VII.A, only)

NDYN.EQ.2; Dynamic Response Analysis for arbitrary
time dependent loads using mode superposition
(complete both Sections VII.A and B below)

NDYN.EQ.3; Response Spectrum Analysis
(complete both Sections VII.A and C, below)

NDYN.EQ.4; Dynamic Response Analysis for arbitrary time
dependent loads using step-by-step direct
integration
(complete Section VII.B below)

In any given dynamic analysis case only one (1) value of NDYN will be
considered. However, if NDYN.EQ.2 or 3, the program must first solve
the eigenvalue problem for structure modes and frequencies. These
eigenvalues/vectors are then used as input to either the Forced Response
Analysis (NDYN.EQ.2) or to the Response Spectrum Analysis (NDYN.EQ.3).
Hence, options 1, 2 or 3 all require that the control parameters for
eigenvalue extraction be supplied in Section VII.A, below,

In case of a direct step-by-step integration analysis (NDYN.EQ.4)
do not provide the eigenvalue solution control card of Section VII.A.

For the special case of dynamic analysis re-start (NDYN.EQ.-2 or -3),
data input consists of the Heading Card (Section 1), the Master Control
Card (Section I1), and either of Sections VII.,B (-2) or VII.C (-3),
below. Re-starting is possible only if a previous solution using the
same model was performed with NDYN.EQ.l, and the results from this
eigenvalue solution were saved on the re-start file, (See Appendix A.)

Up to this section the program processes (i.e., expects to read)
essentially the same blocks of data for either the static or dynamic
analysis cases; certain of these preceding data cards, however, are
read by the program but are not used in the dynamic analysis phase.

In general, the purpose of the preceding data sections is to provide
information leading to the formation of the system stiffness and mass
matrices (appropriately modified for displacement boundary conditions).
For example, element load sets (A,B,C,D) may be constructed as though

a static case were to be considered, but these data are not used in a
dynamic analysis; i.e., the same data deck through Section IV can be
used for either type of analysis. The concept of structure loading
conditions is not defined for the dynamic case, and input for Sections
V and VI must be prepared specially.

VII.1

VII., DYNAMIC ANALYSES (continued)

A diagonal (lumped) mass matrix is formed automatically using
element geometry and assigned material density or densities. The mass
matrix so defined contains only translational mass coefficients
calculated from tributary element volumes common to each node. Known
rotational inertias must be input for the individual nodal degrees of
freedom in Section V, above.

Non-zero impressed displacements (or rotations) input by means of
the BOUNDARY element (type ''7") are ignored; instead the component is
restrained against motion during dynamic motion of the structure.

The program does not change the order of the system by performing
a condensation of those nodal degrees of freedom having no (zero)
mass coefficients; i.e., a zero mass reduction is not performed.
No distinction is made between static and dynamic degrees of freedom;
i.,e., they are identical in sequence, type and total number.

VII.2

VII,

notes

1)

@)

3)

(4)

6)

)
\7)

NOTES.

DYNAMIC ANALYSES (continued)

A,

/

1)

(2)

MODE SHAPES AND FREQUENCIES (NDYN,EQ.1l, 2 or 3) (315,2F10.0)

columns variable entry

1 -5 I1FPR Flag for printing intermediate matrices,

norms, etc, calculated during the
eigenvalue solution;

EQ.O; do not print

EQ.1; print

6 - 10 IFSS Flag for performing the STURM SEQUENCE
check,;
EQ.O; check to see if eigenvalues
were missed
EQ.1; pass on the check
11 - 15 NITEM Maximum number of iterations allowed

to reach the convergence tolerance;
EQ.0; default set to "'16"

16 - 25 RTOL Convergence tolerance (accuracy) for
the highest (''NF'') requested eigen-
value;

EQ.0; default set to "1.0E-5"

26 - 35 COFQ Cut-off frequency (cycles./unit time)

EQ.0; NF eigenvalues will be ex-
tracted

GT.O; extract only those values
below COFQ

36 - 40 NFO Number of starting iteration vectors

. to be read from TAPElO
qi = 52 KRR . } o] '
Bk g bl L e e e
N L boek aplaa 07
e, R OGN ~ cank Ne - olnr 1{,‘- -~ o
Ca Tiess r.«(»} D e e aTe ! 12l NI

Extra output produced by the eigenvalue sdlutions can be
requested; output produced by this option can be quite
voluminous. Normal output produced by the program consists
of an ordered list of eigenvalues followed by the eigen-
vectors for each mode. The number of modes found and
printed is specified by the variable "NF' given in card
columns 16-20 of the Master Control Card.

The program performs the solution for eigenvalues/vectors
using either of two (2) distinct algorithms:

(a) the DETERMINANT SEARCH algorithm requires that
the upper triangular band of the system stiffness
matrix fit into high speed memory (core); i.e.,
one equation "block".

(b) the SUBSPACE ITERATION algorithm is used if only
portions (fractions) of the system matrix can be
retained in core; i.e., the matrix (even though
in band form) must be manipulated in blocks.

VII.3

VII. DYNAMIC ANALYSES (continued)

A. MODE SHAPES AND FREQUENCIES (continued)

The program will automatically select the SUBSPACE ITERATION
procedure for eigenvalue solution if the model is too large
for the in-core algorithm.

The entries "IFSS", "NITEM" and "RTOL" are ignored if the pro-
gram can use the DETERMINANT SEARCH to find eigenvalues.
Whether or not a model is too large for the DETERMINANT SEARCH
depends on the amount of core allocated (by the programmer

and not the user) for array storage. The program variable
"MTOT" equals the amount of working storage available.

Define:

MBAND = maximum equation bandwidth (coefficients)
~ (maximum element node number difference)
X (average number of degrees of freedom
per node)
total number of degrees of freedom in
the model
(6) x (total number of nodes) - [number of
fixed (deleted) degrees of freedom]
NEQB = number of equations per block of storage
* MTOT/ MBAND/ 2 (for large systems)

I

NEQ

If NEQB is less than NEQ, the model is too large for the
DETERMINANT SEARCH algorithm, and the SUBSPACE ITERATION
procedure will be used.

If the SUBSPACE ITERATION algorithm is used the user may
request that the STURM SEQUENCE check be performed. By
experience the algorithm has always produced the lowest NF
eigenvalues, but there is no formal mathematical proof that
the calculated NF eigenvalues will always be the lowest ones.
The STURM SEQUENCE check can be used to verify that the
lowest NF eigenvalues have been obtained. It should be
noted that the computational effort expended in performing
the STURM SEQUENCE check is not trivial, A factorization
of the complete system matrix is performed at a shift Jjust
to the right of the NFth eigenvalue.

If during the SUBSPACE ITERATION the NFth eigenvalue fails
to converge to a tolerance of RTOL" (normally 1,0E-5, or
5 significant figures) within "NITEM"' (normally '"'16")
iterations, then the STURM SEQUENCE flag ("'IFSS') is
ignored.

VII.4

VII. DYNAMIC ANALYSES (continued)
A. MODE SHAPES AND FREQUENCIES (continued)

(3) The maximum number of iterations to reach convergence
("NITEM") applies only to the SUBSPACE ITERATION algorithm.
If cc 11-15 are left blank, a default value of "'16" for
NITEM is assumed.

(4) The convergence tolerance (''RTOL') is applicable only if
the SUBSPACE ITERATION algorithm is used. This tolerance
test applies to the NFth eigenvalue, and all eigenvalues
lower than the NFth one will be more accurate than RTOL.
The lowest mode is found most accurately with precision
decreasing with increasing mode number until the highest
requested mode ("NF") is accurate to a tolerance of RTOL.
Iteration is terminated after cycle number (k+l) if the
NFth eigenvalue (A, say) satisfies the inequality:

[|Ak+1) - A(k) |/A(x)] < RTOL

If the determinant search algorithm is used, the eigenpairs
are obtained to a high precision, which is indicated by the
"physical error bounds"

e, = lirlly, 7 ke ll,

where
2
ri=(K‘(.UiM)¢1)

and (uF $.) are the i'th eigenvalue and eigenvector obtained
in the soiution.

(5) The cut-off frequency ('COFQ") is used by both eigenvalue
algorithms to terminate computations if all eigenvalues
below the specified frequency have been found.

The DETERMINANT SEARCH algorithm computes eigenvalues in
order from "1" to "NF'. If the Nth eigenvalue (1 <N <NF)
has a frequency greater than ''COFQ", the remaining (NF-N)

eigenvalues are not computed.

VII.5

VII. DYNAMIC ANALYSES (continued)
A, MODE SHAPES AND FREQUENCIES (continued)

The SUBSPACE ITERATION algorithm terminates calculation
when the Nth eigenvalue is accurate (i.e., does not change
with iteration) to a tolerance of RTOL, As before, the Nth
eigenvalue is the nearest eigenvalue higher than COFQ. 1If
the SUBSPACE ITERATION solution determines N eigenvalues
less than COFQ (where, N <NF) , the STURM SEQUENCE check
(if requested) is performed using the Nth (rather than the
NFth) eigenvalue as a shift.

Only those modes whose frequencies are less than COFQ
will be used in the TIME HISTORY or RESPONSE SPECTRUM
analyses (Sections VII.B and C, below).

(6) The starting iteration vectors, together with control
information, must be written onto TAPElO before the program
execution is started. Appendix B describes the creation of
TAPE1O0 and gives the required control cards.

(7) The program does not calculate rigid body modes, i.e. the
system must have been restraint so that no rigid body modes
are present. In exact arithmetic the element d of the
matrix D in the triangular factorization of the stiffness
matrix, i.e. K:=LDLT, is zero if a rigid body mode is present,
In computer arithmetic the element d,, is small when compared
with the other elements of the matrix D. If this condition
occurs the program stops with a message.

L]

Note: If many "artificially” stiff boundary elements are
used, the average of the elements of D will be artificially
large. Consequently, dnn may be small in comparison, and
although no rigid body modes may be present, the program
will stop. In a dynamic analysis it is recommended not

to use very stiff boundary elements.

END OF DATA CASE INPUT (NDYN.EQ.1)

VIi.6

e T e Y v VI FUR S - Ao R | 191 - (M Tvy < e, A -

VII. DYNAMIC ANALYSES (continued)
B. RESPONSE HISTORY ANALYSIS (NDYN.EQ.2 or NDYN.EQ.4)

The NDYN.EQ.2 option uses the ('NF'") mode shapes and
frequencies computed in the preceeding Section (VII.A) to perform
a mode superposition solution for forced response. The NDYN.EQ.4
option initiates a direct step-by-step integration of the coupled
system equations, i.e. no eigenvalue solution has been performed
and no transformation to the eigenveetor basis is now carried out.
The data input is identical to the case NDYN.EQ.2 except for the
definition of damping. Dynamic response can be produced by two (2)
general types of forcing function:

(1) ground acceleration input in any (or all) of
the three (3) global (X,Y,Z) directions;
and /or
(2) time varying loads (forces/moments) applied in any
(or all) nodal degrees of freedom (except - ''slave' -
degrees of freedom)

Time dependent forcing functions (whether loads or ground
acceleration components) are described in two steps. First, a
number (1l or more are possible) of non-dimensional time functions
are specified tabularly by a set of descrete points: [f(ti),ti],
where i = 1,2,,...,k. Each different time function may have a different
number of definition points (k). A particular forcing function
applied at some point on the structure is then defined by a scalar
multiplier ("E", say) and reference to one of the input time
functions ('f(t)", say). The actual force (or acceleration) at any
time ("+"", say) equals Bxf(1); £(1) is found by linear interpola-
tion between two of the input time points {ti’ti+1} » Wwhere ty S'rsti+1.

Assuming that the solution begins at time zero (0), an in-
dependent arrival time (ta, where t, 20) may be assigned to each
forcing function. The forcing function is not applied to the system
until the solution time (”T”, say) equals the arrival time, ta.
Interpolation for function values is based on relative time within
the function table; i.e., g(1) = f(1- ta).

The structure is assumed to be at rest at time zero; i.e.,
zero initial displacements and velocities are assumed at time of

solution start.

The following data are required for a Forced Dynamic Response

Analysis:
1. Control Card (515,2F10.0)
notes columns variable entry
(1) l - 5 NFN Number of different time functions;

GE.1

VII.7

VII. DYNAMIC ANALYSES (continued)
B. RESPONSE HISTORY ANALYSIS (continued)

notes columns variable entry

(2) 6 - 10 NGM Ground motion indicator;
EQ.0; no ground motion is input
EQ.1; read ground motion control
card (Section VII.B.3)
(3) 11 - 15 NAT Number of different arrival times
for the forcing functions;
EQ.0; all arrival times are zero

(4) l6 - 20 NT Total number of solution time steps;
GE.1l
(5) 21 - 25 NOT Output print interval for stresses,

displacements, etc.
GE.l and LE.NT

4) 26 - 35 DT Solution time step, At;
GT.O

(6) 36 - 45 DAMP Damping factor to be applied to all
NF modes (fraction of critical)
GE.O

In case of NDYN.EQ.4 use

(6) 36 - 45 ALPHA Damping factor o
(7) 46 - 55 BETA Damping factor g
NOTES/

(1) At least one (1) time function must be ‘nput,

(2) If no ground acceleration acts on the structure, set ''NGM"
to zero and skip Section VII.B.3, below. Both ground
acceleration and nodal force input are allowed.

(3) 1If no arrival time values are input, all forcing functions
begin acting on the structure at time zero. The same
arrival time value may be referenced by different forcing
functions. "NAT" determines the number of non-zero entries
that the program expects to read in Section VII.B.4, below.

(4) The program performs a step-by-step integration of the
equations of motion using a scheme which is unconditionally
stable with respect to time step size, At. 1In case NDYN.EQ.2
the modal uncoupled equations of motion are integrated. 1In
case NDYN.EQ.4 the coupled system equations are integrated.
If "T" is the period of the highest numbered mode (normally
the NFth mode) that is to be included in the response

calculation, At should be chosen such that At/T <0.l. A

ViI.8

VII.

DYNAMIC ANALYSES (continued)

B.

(%)

6)

(7

RESPONSE HISTORY ANALYSIS (continued)

larger time step (i.e., At > 0.1T) will not cause failure
(instability), but participation of the higher modes is
"filtered' from the predicted response. In general, with
increasing time step size the solution is capable of
capturing less of the higher frequency participation.

The program computes system displacements at every solution
time step, but printing of displacements and recovery of
element stresses is only performed at solution step inter-
vals of ''NOT'. NOT must be at least "1" and is normally
selected in the range of 10 to 100.

The damping factor ("'DAMP'") is applied to all NF modes.
The admissible range for DAMP is between 0.0 (no damping)
and 1.0 (100% of critical viscous damping).

In case NDYN.EQ.4 the damping matrix used is C = aM+ BK,
where o and P are defined in columns 36 to 55.

VII.9

VII,

notes

1

2)

&)

4)

(5)

NOTES

DYNAMIC ANALYSES (continued)

B.

v

(1)

(2)

(3)

4)

(5)

RESPONSE HISTORY ANALYSIS (continued)
2. Time-Varying Load Cards (415,F10.0)
columns variable entry

1 -5 NP Nodal point number where the load
component (force or moment) is applied;
GE.l and LE.NUMNP
EQ.O last card only
10 IC Degree of freedom number;
GE.1 and LE.6
(&=1, 6Y=2, 6Z=3, ¥X=4, $Y=5, $2=6)

11 - 15 IFN Time function number;
GE.1l and LE,NTFN

16 - 20 IAT Arrival time number;
EQ.0; load applied at solution start
GE.1; non-zero arrival time

21 - 30 P Scalar multiplier for the time function;

EQ.O0; no load applied

One card is required for each nodal degree of freedom
having applied time varying loads. Cards must be input

in ascending node point order. This sequence of cards

must be terminated with a blank card. A blank card must be
supplied even if no loads are applied to the system,

The same node may have more than one degree of freedom
loaded; arrange degrees of freedom references ('IC')
in ascending sequence at any given node,

A non-zero time function number ("IFN') must be given for
each forcing function. IFN must be between 1 and NFN,

The time functions are input tabularly in Section VII.B.5,
below. Function values at times between input time points
are computed with linear interpolation,

If "IAT" is zero (or blank), the forcing function is assumed
to act on the system beginning at time zero. 1I1f IAT is
input as a positive integer between 1 and NAT, the IATth
arrival time (defined in Section VII.B.4, below) is used

to delay the application of the forcing function; i.e.,

the forcing function begins acting on the structure when the
solution reaches the IATth arrival time value.

The actual magnitude of force (or moment) acting on the

model at time, t, equals the product: ("P") x (value of
function number "IFN'" at time, t).

VII. 10

VII. DYNAMIC ANALYSES (continued)

B.

notes

a)

2)

NOTES .

(1)

(2)

RESPONSE HISTORY ANALYSIS (continued)

3. Ground Motion Control Card (615)

columns variable entry
1 - 5 NFNX Time function number describing the
ground acceleration in the X-direction
6 - 10 NFNY Time function number describing the
ground acceleration in the Y-direction
11 - 15 NFNZ Time function number describing the
ground acceleration in the Z-direction
16 -~ 20 NATX Arrival time number, X-direction
21 - 25 NATY Arrival time number, Y-direction
26 - 30 NATZ Arrival time number, Z-direction

This card must be input only if the ground motion
indicator ('NGM') was set equal to one (1) on the
Control Card (Section, VII,B.l, above). A zero

time function number indicates that no ground motion
is applied for that particular direction,

Zero arrival time references mean that the ground
acceleration (if applied) begins acting on the
structure at time zero (0). Non-zero references
must be integers in the range 1 to NAT.

vii, 11

VII., DYNAMIC ANALYSES (continued)

B.

notes

(1)

notes

NOTES.’

)

RESPONSE HISTORY ANALYSIS (continued)
4. Arrival Time Cards

a. card one (8F10.0)

columns variable entry

1 -10 AT(1) Arrival time number 1
11 - 20 AT (2) Arrival time number 2
71 - 80 AT (8) Arrival time number 8

b. card two (8Fl10.0) - (required if NAT.GT.8)

columns variable entry
l1 -10 AT (9) Arrival time number 9
etc. etc.

The entry ("NAT'") given in cc 11-15 on the Control Card
(Section VII,B.l, above) specifies the total number of
arrival time entries to be read in this section. Input
as many cards as are required to define "NAT" different
arrival times, eight (8) entries per card. If no arrival
times were requested (NAT.EQ.0), supply one (1) blank
card in this section.

VII.12

VII, DYNAMIC ANALYSES (continued)
B. RESPONSE HISTORY ANALYSIS (continued)
S. Time Function Definition Cards
Supply one set (card 1 and card(s) 2) of input for
each of the ''NFN' time functions requested in cc 1-5 of the
Control Card (Section VII.B.1l, above). At least one set of time

function cards is expected in this section., The card sets are input
in ascending function number order.

a. card 1 (15,F10.0,12A5)

notes columns variable entry
(1) 1 - 5 NLP Number of function definition points;
GE.2
(2) 6 - 15 SFTR Scale factor to be applied to f(t)
values;
EQ.0; default set to ""1.0"
16 - 75 HED (12) Label infomation (to be printed with

output) describing this function table

NOTES./

(1) At least two points (i.e., 2 pairs: f(ti)'ti) must be
specified for each time function. Less than two points
would preclude linear interpolation in the table for f(t).

(2) The scale factor "SFTR" is used to multiply function
values only; i.e., input time values are not changed. If
the scale factor is omitted, SFTR 1is re-set by the program
to "1.0" thereby leaving input function values unchanged.

VII, 13

VII. DYNAMIC RESPONSE ANALYSES

B.

notes

(1)

NOTES '

1)

RESPONSE HISTORY ANALYSIS (continued)
5. Time Function Definition Cards (continued)

b. card(s) 2 (12r6.0)

columns variable entry
l - 6 T(1l) Time values at point 1, t1
7 - 12 F(1) Function value at point 1, f(tl)
13 - 18 T (2) Time value at point 2, to
19 - 24 F(2) Function value at point 2, f(tsy)
etc, etc.

Input as many card (s) 2 as are required to define
"NLP" pairs of tj,f(t;), six (6) pairs per card.

Pairs must be input in order of ascending time value,.
Time at point one must be zero, and care must be taken
to ensure that the highest (last) input time value
(typp) is at least equal to the value of time at the
end of solution; i.e., the time span for all functions
must cover the solution time period otherwise the
interpolation for function values will fail. For

the case of non-zero arrival times associated with

a particular function, the shortest arrival time
reference ("tA", say) plus (+) the last function

time ("typp)must at least equal the time at the

end of the solution period (tgNp, say); i.e.,

tA + tNLP o tEND

VII.14

VII. DYNAMIC ANALYSES (continued)
B. RESPONSE HISTORY ANALYSIS (continued)
6. Output Definition Cards

To minimize the amount of output which would be
produced by the program if all displacements, stresses, etc.
were printed, output requests for specific components must be
given in this section. Time histories for selected components
appear in tables; the solution step output printing interval
is specified as "NOT" which is given in cc 21-25 of the Control
Card (Section VII1.,B.1, above).

a. displacement output requests

(1) control card (215)

notes columns variable entry
(1) l1 - 5 KKK Output type indicator;
EQ.1; print histories and maxima

EQ.2; printer plot histories and
recovery of maxima
EQ.3; recover maxima only
(2) 6 - 10 ISP Printer plot spacing indicator

NOTES .

(1) The type of output to be produced by the program
applies to all displacement requests. KKK .EQ.O
is illegal.

(2) "1Sp" controls the vertical (down the page) spacing
for printer plots. Output points are printed on
every (ISP+1)th line. The horizontal (across the
page) width of printer plots is a constant ten (10)
inches (100 print positions). ISP is used only if
KKK.EQ.2.

VII.15

VII. DYNAMIC ANALYSES (continued)
B, RESPONSE HISTORY ANALYSIS (continued)
6. Output Definition Cards
a, displacement output requests (continued)

(2) node displacement request cards (715)

notes columns variable entry
(1) l1 - 5 NP Node number
GE.l1 and LE,NUMNP
EQ.O last card only
(2) 6 - 10 1cC) Displacement component, request 1
11 - 15 IC(2) Displacement component, request 2
16 - 20 IC(3) Displacement component, request 3
21 - 25 IC@4) Displacement component, request 4
26 - 30 IC (5) Displacement component, request 5
31 - 36 IC(6) Displacement component, request 6
GE.1l and LE.6
EQ.O terminates requests for the node
NOTES /

(1) Only those nodes at which output is to be produced
(or at which maxima are to be determined) are entered
in this section., Cards must be input in ascending
node number order, Node numbers may not be repeated,
This section must be terminated with a blank card.

(2) Displacement component requests ("'1c' range from 1 to 6,
where 1=6X,2=6Y,3=BZ,4=¢X,5=¢Y,6=¢Z. The first zero (or
blank) encountered while reading IC(1),IC(2),...,IC(6)
terminates information for the card. Displacement
components at a node may be requested in any order. As
an example, suppose that 8Y, 4X and $Z are to be output at
node 34; the card could be written as ,’34,2,4,6,0/, or
/34,6,4,2,0/, etc. but only four (4) fields would have
non-zero entries,

VII. 16

VII. DYNAMIC ANALYSES (continued)
B. RESPONSE HISTORY ANALYSIS (continued)
6. Output Definition Cards
b. element stress component output requests

(1) control card (215)

notes columns variable entry
(1) 1 - 5 KKk Output type indicator;
EQ.1; print histories and maxima

EQ.2; printer plot of histories
and recovery of maxima
EQ.3; recover maxima only
6 - 10 isp Plot spacing indicator

NOTES /
(1) See Section VII.B.6.a.(l), above.
(2) element stress component request cards (1315)

Requests are grouped by element type;
"NELTYP" groups must be input. A group consists of a series of
element stress component request cards terminated by a blank card.
Element number references within an element type (TRUSS, say)
grouping must be in ascending order. Element number references may
be omitted but not reprated. The program processes element groups
in the same order as originally input in the Element Data (Section 1v,
above). If no output is to be produ®ed for an elemept type, then input
one blank card for its group.

notes columns variable entry
(1) 1 - 5 NEL Element number
GE.1
EQ.0; last card in the group only
(2) 6 - 10 IS (1) Stress component number for output,
request 1
11 - 15 IS (2) Stress component number for output,

request 2

61 - 65 Is(12) Stress component number for output,
request 12

VII, 17

VII. DYNAMIC ANALYSES (continued)
B. RESPONSE HISTORY ANALYSIS (continued)
6. Output Definition Cards
b. element stress component output requests

(2) request cards (continued)

NOTES/

(1) Terminate each different element output group (type)
with a blank card. Elements within a group must be
in element number order (ascending); element number
repetitions are illegal,

(2) The first zero (or blank) request encountered while
reading IS(1), IS(2),..., IS5(12) terminates infor-
mation for the card. No more than twelve (12) different
components may be output for any one of the elements,
Table VII.1 lists the stress component numbers and
corresponding descriptions for the various element
types. Some element types (TRUSS, for example) have
fewer than 12 components defined; only the stress
component numbers listed in Table VII.1l are legal
references.

END OF DATA CASE INPUT (NDYN.EQ.2 or NDYN.EQ.4)

VIiI. 18

TABLE VII,1

MAX TMUM STRESS
FLEMENT NUMBER 0OF COMPONENT OUTPUT
TYPF COMPONENTS NUMBER SYMBOL O E SCRI PTION
1. TRUSS ¢ 2) (1) (P/A) AXIAL STRESS
« 2} (o) AXIAL FORCE

3 * * * * * %* % * * ¥ * & * %* % x & * x *

2. REAM (121 (1) (PLUI)) 1-FORCE AT END I
(2) (V2(I)) 2-SHEAR AT END I
(3) (V3(I1)) 3-SHEAR AT END I
(&) (TL(I1)) 1-TORQUF AT END I
(5) (M2(I)) 2-MOMENT AT END I
(6) (M3(1)) 3-MOMENT AT END I
(7) (P1(J)) 1-FORCE AT END J
() (V2(J)) 2-SHEAR AT END J
(9) (V3(J)) 3-SHEAR AT END J
(10) (T1(J)) 1-TORQUE AT END J
(11) (M2(J)) 2-MOMENT AT END J
(12) (M3(J)) 3-MOMENT AT END J
* 5 5 0 ¥ %* * % * * * x® x % % * % x % % ¥
3. PLANZ-
STRERS/
PLANT -
STRATY
4, AXT[SYM= (20) € 1) (11-S0) V- STRESS AT POINT 0
MeTRLf (2) (22-5S0) U- STRESS AT POINT O
€ 3) (33-50) T- STRESS AT POINT 0
(4) (12-50) UV-STRESS AT POINT 0
(5) (11-S1) V- STRESS AT POINT 1
(6) (22-S1) U- STRESS AT POINT 1
7 (33-S1) T- STRESS AT POINT 1
(8) (12-S1) UV-STRESS AT POINT 1
(9) (11-52) V- STRESS AT POINT 2
(10) (22-52) U- STRESS AT POINT 2
(1) (33-S2) T- STRESS AT POINT 2
(12) (12-S2) UV-STRESS AT POINT 2
(13) (11-S3) V- STRESS AT POINT 3
(14) (22-53) U- STRESS AT POINT 3
(15) (33-53) T- STRESS AT POINT 3
(16) (12-5S3) UV-STRESS AT POINT 3

VI1I.19

it

MA X [MUM
NUMRER OF
COMPNNENTS

STRESS

FLEMENT

TYPE NUMBER
(17)
(18)
(19)
{20)

x * & *® & % ¥ % *

FIGHT
NODE

(12) {

(

BRICK (
{

{

(

1)
2)
3)
4)
5}

6)

7)
8)
9)
(10)
(11)
(12)

o~ g, o~

¥ * % * * * ¥ * %

6. PLATE/ (6) t 1)
SHELL 2)

3)

(&)

5)

{ 6)

1)
2)

a, THICK { 1)
SHELL (42) { 29
AND { 3)
3-DIM (&)

(5)
(6)
{ 7}

COMPONENT

%x

-3

&

%

%*

-3

'3
E-3

&

QUTPUT
SYMBOL

(v -S4)
{J -S54)
(T -S4)
(UV-S4)

x 3

(XX-SL1)
(vyy-SL1)
(ZZ-5L1)
(XY-SL1)
(vyZ-SL1)
(ZX-SL1)

{XX-SL2)
(Yy=-SL2)
(22-SL2)
(XY-SL2)
(YZ-sL2)
(ZX-SL2)

*x x

(XX-S/R)
(YY-S/R)
(XY-S/R)

{XX-M/R)
(YY-M/R)
(XY-M/R)

x®]

(3DRY-F)
(BORY-M)

x *

{SXX(Q))
(SYY(3))
(522(J))
(SXY(0})
(SYZ(0))
(SZX(0))

(SXX(1))

VII, 20

a*

*

%

&

DESCRIPTION

STRESS
U- STRESS
T- STRESS
UV-STRESS

V-

® x %

XX~-STRESS
YY-STRESS
LZ-STRESS
XY=STRESS
YZ~-STRESS
IX-STRESS

XX-STRESS
YY~STRESS
ZZ-STRESS
XY-STRESS
YZ-STRESS
IX-STRESS

L % *

XX-STRESS
YY-STRESS
XY-STRESS

XX-MOMENT
YY-MOMENT
XY-=MOMENT

x * *

AT
AT
AT
AT

&

AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

%

POINT 4
POINT 4
POINT 4
POINT 4

& & &

LOCATION
LOCATION
LOCATION
LOCATION
LOCATION
LOCATION

LOCATION
LOCATION
LOCATION
LOCATION
LOCATIGON
LOCATION

%% % x

RESUL TANT
RESULTANT
RESUL TANT

RESULTANT
RESULTANT
RESULTANT

¥ ¥ ¥

BOUNDARY FQORCE
30UNDARY MOMENT

x ¥® &

XX-STRESS
YY-STRESS
ZZ-STRESS
XY-STRESS
YZ-STRESS
IX-STRESS

XX-STRESS

% ¥ X

A
X

AT
AT
AT
AT
AT
AT

AT

CENTROID
CENTROID
CENTROID
CENTRNID
CENTROID
CENTROID

CENTER OF rACE |

. s ps pe

NN NN NN

&

(0)
(V)
(0)
(0)
(01
(0}

ELEMENT
TYPE

MAXTIMIM
NUMBER 0F
COMPONENTS

STRESS
COMPONENT
NUMBER

{ 8)
{ 5)
(10)
(11}
(12)

(13)
(14)
(15)
(16)
(17)
(18)

(19)
(20)
(21)
(22)
(23)
(24)

(25)
(26)
(27)
(28)
(29)
(30)

(31)
(32)
(33)
(34)
(35)
(36)

(37)
(38)
{39)
(40)
(41)
{42)

QUTPUT
SYMBOL

(Syv(1l

1B
))
(SXyY(1))
})
)]

(SXX(2))
(Syy(2}))
(SZz2(2))
(SXY(2))
(SYZ(21)
(szxt2))

(SXX(3))
(SYvy(3))
(SZ2z(3})
(SXY(3))
(SYZ2(3))
(SZXx(3))

(SXX(4}))
(SYY(4})
(SZZ2(4))
(SXY(&))
(SYyzZ(a))
(SZX(4))

(SXX{5}))
(SYY(5))
(S77(5))
{SXY{5))
(SYz(s))
{SZX{5))

(SXX{6))
(syvis))
(S221(6))
(SxY{61))
(SYZ(6))
(STX(6))

VII.21

DESCR

YY-STRESS
LZ-STRESS
XY-STRESS
YZ-STRESS
IX-STRESS

XX~-STRESS
YY-STRESS
LZ-STRESS
XY-STRESS
YZ-STRESS
IX-STRESS

XX-STRESS
YY-STRESS
LZ-STRESS
XY-STRESS
YZ-STRESS
IX-STRESS

XX=STRESS
YY-STRESS
L1-STRESS
XY-STRESS
YI-STRESS
IX-STRESS

XX-STRESS
YY-STRESS
7Z-STRESS
XY-STRE'SS
YZ-STRESS
IX-STRESS

XX=-STRESS
YY-STRESS
ZZ-STRESS
XY-STRESS
YZ-STRESS
IX-STRESS

I

AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

P T I1ON

CENTER
CENTER
CENTER
CENTER
CENTER

OF
of
OF
oF
OF

CENTER
CENTER
CENTER
CENTER
CENTER
CENTER

OF
OF
OF
oF
QF
aF

CENTER
CENTER
CENTER
CENTER
CENTER
CENTER

oF
OF
0OF
OF
OF
OF

CENTER
CENTER
CENTER
CENTER
CENTER
CENTER

OF
OF
oF
OF
OF
OF

CENTER
CENTER
CENTER
CENTER
CENTER
CENTER

OF
OF
oF
OfF
OF
OF

CENTER
CENTER
CENTER
CENTER
CENTER
CENTER

OF
OF
or
OF
OF
OF

FACE
FACE
FACE
FACE
FACE

FACE
FACE
FACE
FACE
FACE
FACE

FACE
FACE
FACE
FACE
FACE
FACE

FACE
FACE
FACE
FACE
FACE
FACE

FACE
FACE
FACE
FACE
FACE
FACE

FACE
FACE
FACE
FACE
FACE
FACE

[5G, IR IV, IS, V] RSP P S W) o W NNNMNN N Pt P s s

(o el e So ¢ 1o A

~
=

9.

A,

B.

b & g
DIDF
TANGENT
B8END

& x ¥
& % 3

R

(12)

(18)

¥ %

4t
4
#*

1)
2)
3)
4)
51
6)

— gy o g

7)
8)
9)
{10

(11)

{(12)

1)
2)
3)
4)
5)
6)

7)
8)
9)
(10}
(11)
(12)

o— o —

(13)
(14)
(15)
(16)
(17)
(18)

(PX(I)
(vy(n
(vZ(1)
(TXxXen)
(MY(I)
(MZ(1)

(PX(J)
(vy(J)
(vity)
(TX(J)
(MY (4)
(MZ(J)

(PX(1)
(vv(rl)
(vzil)
(TX(I)
(MY(1)
(MZ (1)

(PX{(C)
{vv(C)
(vzZ(C)
(TX(C)
(MY(C)
(MZ(C)

(PX(J)
{vy{J)
(vZ{J)
(TX{J)
(MY(J)
(MZ2(J)

VII.22

— At e e - — e — - — T — —— — — — S N o -

X-FORCE
Y-SHE AR
Z-SHEAR
X-TORQUE
Y~-MOMENT
I-MOMENT

X-FORCE
Y-SHE AR
I-SHE AR
X-TORQUE
Y-MOMENT
I-MOMENT

X-FORCE
Y-SHEAR
Z-SHE AR
X-TORQUE
Y-MOMENT
L-MOMENT

X-FORCE
Y-SHEAR
I-SHEAR
X-TCRQUE
Y=-MOMENT
LZ-MOMENT

X-FORCE
Y-SHEAR
I-SHEAR
X-TORQUE
Y-MOMENT
2-MOMENT

AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

AT
aT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT

s
4+

END
END
END
END
END
END

Pt pme gy g ey

END
END
END
END
END
END

o e O G

END
END
END
END
ENOD
END

CENTER
CENTER
CENTER
CENTER
CENTER
CENTER

END
eND
END
END
END
END

[UGN SR ANy S S &

OF
aFf
oF
OF
OF
OF

ARC
ARC
ARC
ARC
ARC
ARC

VII. DYNAMIC ANALYSES (continued)
C. RESPONSE SPECTRUM ANALYSIS (NDYN.EQ.3)

This option combines all (NF) mode shapes and frequencies
computed during the eigenvalue solution (Section VII,A) to calculate
R.M.S. stresses/deflections due to an input displacement (or accelera-
tion) spectrum. The input spectrum is applied in varying proportions
in the global X,Y,Z directions. For the case of a non-zero cut-off
frequency "COFQ" (Section VII.A), only those modes whose frequencies
are less than COFQ will be combined in the R.M.S. analysis.

1. Control Card (3F10.0,15)

notes columns variable entry
(1) 1 -10 FX Factor for X-direction input
11 - 20 FY Factor for Y-direction input
21 - 30 FZ Factor for Z-direction input
EQ.O; not acting
(2) 31 - 35 IST Input spectrum type;
EQ.0; displacement vs. period
EQ.1; acceleration vs. period
NOTES.,

(1) All three (3) direction factors may be non-zero in
which case the entries represent the X,Y,Z components
of the input direction vector.

(2) "1sT" defines the type of spectrum table to be input
immediately following. The spectral displacements
(“Sd") and accelerations (”Sa") are assumed to be

related as follows: S, = (4?2 (59).

vii.23

VII. DYNAMIC ANALYSES (continued)
C. RESPONSE SPECTRUM ANALYSIS (continued)
2. Spectrum Cards
a. heading card (1246)
notes columns variable entry
1 - 72 HED (12) Heading information used to label

the spectrum table

b. control card (I5,Fl10.0)

notes columns variable entry
l- 5 NPTS Number of definition points in the
spectrum table;
GE.2
6 - 15 SFTR Scale factor used to adjust the

displacement (or acceleration)
ordinates in the spectrum table
EQ.1.0; no adjustment

¢. spectrum data (2F10.0)

notes columns variable entry
1) l - 10 T Period (reciprocal of frequency)
2) 11 - 20 S Value of displacement (or acceleration

if IST.EQ.1) |

NOTES/

(1) Input one definition point per card; ''NPTS' cards
are required in this section. Cards must be arranged
in ascending value of period.

(2) "s" is interpreted to be a displacement quantity

0"

if "IST" was input as zero. For IST.EQ.l, 'S
is an acceleration value.

END OF DATA CASE INPUT (NDYN.EQ.3)

VIiI.24

APPENDIX A - CONTROL CARDS AND DECK SET-UP FOR DYNAMIC ANALYSIS RE-START

The purpose of this appendix is to describe the procedure
(including control cards and deck set-up) required for program re-
start following an eigenvalue/eigenvector extraction analysis. The
re-start option has been included in the program in order to make
a repeated forced response or spectrum analysis possible without
solving each time for the required eigensystem. For medium-to-large
size models, eigenvalue solution is quite costly when compared to the
forced response calculations; hence, excessive costs may be incurred
if the entire job has to be re-run due to improper specification of
forcing functions or input spectra, inadequate requests, etc. For
small models (less than 100 nodes, say) the extra effort required
for re-start is normally not justified.

A complete dynamic analysis utilizing the re-start feature
requires that the job be rum in two (2) steps:

JOB(1) : Eigenvalue extraction solution only, after which
program files TAPE1l,TAPE2,TAPE7,TAPE8, and TAPE9
are saved on the re-start tape.

JOBS(2): Re~instatement of program files TAPEl,TAPEZ2,TAPE7,TAPES,
and TAPE9 from the re-start tape followed by a Dynamic
Response Analysis (NDYN.EQ.-2) or a Response Spectrum Analysis
(NDYN.EQ.-3).

For a given model, the first job [JOB(1)] creating the re-start
tape is run only once. The re-start tape then contains all the
initial information required by the program at the beginning of a
forced response analysis. More than one second job [JOBS(2)] may be
run using the re-start tape as initial input; i.e., the re-start
tape is not destroyed.

Control cards and deck set-up for execution on the CDC 6400
computer at the University of California, Berkeley are given below:

JOB(1) -

NOTES ./

(1)

(2)
(3)
1)
(3)
(6)

)
(8)

EIGENVALUE SOLUTION/RE-START TAFE CREATION

Notes Card Deck

(1) Job number, 1, 200, 120000, 300. User Name
(2) REQUEST, TPl,I. Reel No., Tape User Name
(3) COJPYBF, TPl,SAP4
UNL@AD, TP1
(4) LGO&,SAP4
REWIND,TAPEL,TAPE2,TAPE7,TAPES, TAPEO
(5) REQUEST,RESTART,I. Reel No., Tape User Name, GUTPUT
COPYBF,TAPE1l, RESTART
C@PYBF,TAPE2, RESTART
(6) { COPYBF,TAPE7,RESTART
COPYBF, TAPES, RESTART
COPYBF, TAPE9, RESTART
(7) 7-8-9

PROBLEM DATA DECK:

I. HEADING CARD

II. MASTER CONTROL CARD with
(LL.EQ.O)
(NF.GE.1)
(NDYN.EQ.1)

(M@DEX .EQ.0)
1II. JOINT DATA
v, ELEMENT DATA
V. CONCENTRATED MASS DATA
VI. ELEMENT LOAD MULTIPLIERS
viI. DYNAMIC ANALYSIS
A. Mode Shapes and Frequencies
blank card
blank card

(8) 6-7-8-9

The job control card parameters are defined as follows:

m" = Number of tape drives required for the job.

"200" CPU time limit (in octal seconds).

"120000" = Central memory field length (in octal).

"300" = page limit for printing.

Tape containing binary version of program (TPl) is requested.
Binary version ot the program is copied onto a disk file (SAF4) .
Program is loaded and execution is initiated.

A blank tape (RESTART) is requested.

The contents of disk files TAPEl,TAPE2, etc. are copied onto
tape RESTART.

End-of-record card: 7,8,9 punched in column 1.

End-of~file card: 6,7,8,9 punched in column 1,

JOB (2) - RE-START FOR RESPONSE HISTORY ANALYSIS (NDYN.EQ.-2)
or RESPONSE SPECTRUM ANALYSIS (NDYN.EQ.-3)

Notes Card Deck

Job number, 1,200,120000, 300, User Name
REQUEST, RESTART, I. Reel No., User Name
COPYBF, RESTART, TAPEL
COPYBF, RESTART, TAPE2
COPYBF, RESTART, TAPE7
COPYBF, RESTART, TAPES
C@PYBF, RESTART, TAPE9
REWIND, TAPELl , TAPE2,TAPE7, TAPES, TAPE9
UNL@AD, RESTART
REQUEST,TP1,I. Reel No., User Name
(2) YcgrYBF,TP1,SAP4
LG@,SAP4
7-8-9

(1)

PROBLEM DATA DECK

I. HEADING CARD
I1. MASTER CONTROL CARD with
(LL.EQ.O)
(NF.GE.1)
(NDYN.EQ.-2 or -3)
(3) (MODEX .EQ.0)
VII. DYNAMIC ANALYSIS
B. Dynamic Response Analysis (NDYN.EQ.-2)
or
C. Response Spectrum Analysis (NDYN.EQ.-3)
blank card
blank card
6-7-8-9

NOTES/

(1) The disk files TAPE1l,TAPE2, etc. are re-created using the
information saved on tape RESTORE.

(2) The binary version of the program is again obtained from
tape TPl.

(3) Normally, the number of frequencies ("NF") entered on the
MASTER CONTROL CARD for a re~start case has the same value
as was specified earlier when the eigenvalue problem was
solved in JOB(1). 1If a value for the cut-off frequency
(¢ COFQ 'Y was entered on the "'Mode Shapes and Frequencies'
control card [in JOB(1)] and the program extracted fewer
than "NF" frequencies (eigenvalues), then only the actual
number of elgenvalues computed by the program in JOB(1l)
is specified for "NF" in this re-start run,

APPENDIX B: CONTROL CARDS AND DECK SET-UP FOR USE OF STARTING

ITERATION VECTORS

In the dynamic analysis of large-order systems, the solution of
the required eigensystem is normally the most expensive phase. The
option described in this appendix demonstrates how it is possible to
use NFg previously calculated eigenvalues and vectors when the solu-
tion for NF 2 NFJ eigenvalues and eigenvectors is required.

Assume that in Job (1), the solution for NFg eigenvalues and
eigenvectors was performed. At the end of this job, TAPE2 and TAPE7
must have been saved on a physical tape, say "RESTART''. Assuming that
in JOB(2) the solution of NF eigenvalues and eigenvectors is required,
then prior to the execution of this job, tape RESTART needs to be
copied onto TAPE1O.

This procedure was performed with the following control cards
on the CDC 6400 of the University of California at Berkeley:

JOB(l) - SOLUTION FOR NF@ EIGENVALUES/RESTART TAPE CREATION
Notes Card Deck

Job No., 1,200,120000,500. User Name
REQUEST,TPl,I. Reel No., Tape User Name
C@PYBF, TP1,5AP4
UNL@AD, TPL
{REQUEST,TAPEZ,NB
REQUEST, TAPE7,NB
LG@, SAP4
REWIND, TAPE2 ,TAPE7
(3) REQUEST, RESTART,I. Reel No.,Tape User Name, OUTPUT
(1) f COPYBR, TAPE2, RESTART, 1
| COPYBF, TAPE7,TP3
7-8-9
PROBLEM DATA DECK
6-7-8-9

1

2)

Notes,’
(1) See Notes (1) - (4) in Appendix A.

(2) The computer is directed to write on disk files TAPEZ2
and TAPE7 in an unblocked format.

(3) A blank tape (RESTART) is requested onto which the contents
of files TAPE2 and TAPE7 are to be written.

(4) The contents of files TAPE2 and TAPE7 are written as one file
onto tape RESTART.

_

JOB(2) - SOLUTION FOR ADDITIONAL EIGENVALUES USING THE INFORMATION

STORED ON TAPE "RESTART"

Notes Card Deck

Job No.,1,200,120000,500. User Name
REQUEST, RESTART,I. Reel No., Tape User Name
REQUEST,TAPE10,NB
REQUEST, TAPE2,NB
REQUEST, TAPE7,NB
(2) C@PYBF, RESTART, TAPE10O
UNLOAD, RESTART
REWIND, TAPE1O
(3) REQUEST,TP1,I. Reel No., Tape User Name
CﬂPYBF,TPl,SAP4
LGO,SAP4
7-8-9
PROGRAM DATA DECK
6-7-8-9

(1)

Notes/

(1) TAPE1O (as TAPE2 and TAPE7 if they are to be used for
further restarts,) is requested to be an unblocked file.

(2) The contents of tape RESTART are copied into TAPElO as
one file,

(3) Program execution.

EERC

EERC
EERC
EERC

EERC

EERC

EERC

EERC
EERC
EERC

EERC

67-1

68-1

68-2

68-3

68-4

68-5

69-3

69-4

69-6

69-7

69-8

EARTHOUAKE ENGINEERING RESEARCH CENTER REPORTS

"Feasibility Study Large-Scale Earthquake Simulator Facility", by
J. Penzien, J. G. Bouwkamp, R. W. Clough and D. Rea - 1967 (PB 187 905)

Unassigned

"Tnelastic Behavior of Beam~to-Column Subassemblages Under
Repeated Loading", by V. V. Bertero - 1968 (PB 184 888)

"A Graphical Method fer Sclving the Wave Reflection-Refraction
Problem", by H. D. McNiven and Y. Mengi - 1968 (PB 187 943)

"Dynamic Properties of McKinley School Buildings", by D. Rea,
J. G. Bouwkamp and R. W. Clough - 1968 (PB 187 902)

"Characteristics of Rock Motions During Earthquakes", by H. B. Seed,
I. M. Idriss and F. W. Kiefer - 1968 (PB 188 338)

“Earthquake Engineering Research at Berkeley" ~ 1969 (PB 187 906)

"Nonlinear Seismic Response of Earth Structures", by M. Dibaj and
J. Penzien - 1969 (PB 187 904)

"pProbabilistic Study of the Behavior of Structures During Earth-
quakes", by P. Ruiz and J. Penzien - 1969 (PB 187 886)

"Numerical Solution of Boundary Value Problems in Structural
Mechanics by Reduction to an Initial Value Formulation", by
N. Distefano and J. Schujman = 1969 (PB 187 942)

"Dynamic Programming and the Solution of the Biharmonic Equation",
by N. Distefano - 1962 (PB 187 241)

"Stochastic Analysis of Offshore Tower Structures", by A. K. Malhotra
and J. Penzien ~ 1969 (PB 187 903)

“"Rock Motion Accelerograms for High Magnitude Earthquakes”, by
H. B. Seed and I. M. Idriss - 1969 (PB 187 940)

"Structural Dynamics Testing Facilities at the University of
California, Berkeley", by R. M. Stephen, J. G. Bouwkamp, R. W.
Clough and J. Penzien - 1969 (PB 189 1ll11)

Note: Numbers in parentheses are Accession Numbers assigned by the National Technical
Information Service. Copies of these reports may be ordered from the National
Technical Information Service, Springfield, Virginia, 2215l. Either the accession
nunber or a complete citation should be guoted on orders for the reports.

Revised 4/23/73

—y

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

69-9

69-10

69-11

69-12

69-13

69-14

69-15

69-16

70-3

70-4

70-5

70-6

70-7

70-8

"Seismic Response of Soil Deposits Underlain by Sloping Rock
Boundaries", by H. Dezfulian and H. B. Seed - 1969 (PB 189 114)

"Dynamic Stress Analysis of Axisymmetric Structures Under Arbitrary
Loading", by S. Ghosh and E. L. Wilson - 1969 (PB 189 026)

"Seismic Behavior of Multistory Frames Designed by Different
Philosophies", by J. C. Anderson and V. V. Bertero - 1969 (PB 190 662) !

"Stiffness Degradation of Reinforcing Concrete Structures Sub-
jected to Reversed Actions", by V. V. Bertero, B. Bresler and
H. Ming Liao - 1969 (PB 202 942)

"Response of Non-Uniform Soil Deposits to Travel Seismic Waves",
by H. Dezfulian and H. B. Seed - 1969 (PB 191 023)

"Damping Capacity of a Model Steel Structure", by D. Rea, R. W. Clough
and J. G. Bouwkamp - 1969 (PB 190 663)

"Influence of Local Soil Conditions on Building Damage Poten-
tial During Earthquakes", by H. B. Seed and I. M. Idriss -~ 1969
(PB 191 036)

"The Behavior of Sands Under Seismic Loading Conditions", by
M. L. Silver and H. B. Seed ~ 1969 (AD 714 982)

"Earthquake Response of Concrete Gravity Dams", by A. K. Chopra -
1970 (AD 709 640)

"Relationships Between Soil Conditions and Building Damage in
the Caracas Earthquake of July 29, 1967", by H. B. Seed, I. M. Idriss
and H. Dezfulian - 1970 (PB 195 762)

"Cyclic Loading of Full Size Steel Connections", by E. P. Popov
and R. M. Stephen - 1970 (PB 213 545)

"Seismic Analysis of the Charaima Building, Caraballeda, Venezuela",

by Subcommittee of the SEAONC Research Committee, V. V. Bertero,

P. F. Fratessa, S. A. Mahin, J. H. Sexton, A. C. Scordelis, E. L. Wilson,
L. A. Wyllie, H. B. Seed, and J. Penzien, Chairman - 1970 (PB 201 455)

“A Computer Program for Earthquake Analysis of Dams”, by A. K.
Chopra and P. Chakrabarti - 1970 (AD 723 994)

"The Propagation of Love Waves Across Non-Horizontally Layered
Structures”, by J. Lysmer and L. A. Drake - 1970 (PB 197 896)

"Influence of Base Rock Characteristics on Ground Response",
by J. Lysmer, H. B. Seed and P. B. Schnabel - 1970 (PB 197 897)

"Applicability of Laboratory Test Procedures for Measuring Soil
Liquefaction Characteristics Under Cyclic Loading", by H. B.
Seed and W. H. Peacock - 1970 (B 198 016)

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

EERC

70-9

70-10

71-1

71-3

71-4

71-5

71-6

71-7

71-8

72-1

72-2

72-3

72-4

72-5

72-6

72-7

"A Simplified Procedure for Evaluating Soil Liquefaction Potential",
by H. B. Seed and I. M. Idriss - 1970 (pB 198 009)

“Soil Moduli and Damping Factors for Dynamic Response Analysis",
by H. B. Seed and I. M. Idriss - 1970 (PB 197 869)

"Koyna Earthquake and the Performance of Koyna Dam", by A. K.
Chopra and P. Chakrabarti - 1971 (AD 731 496)

"Preliminary In-Situ Measurements of Anelastic Absorption in Soils
Using a Prototype Earthquake Simulator", by R. D. Borcherdt and
P. W. Rodgers - 1971 (PB 201 454)

"Static and Dynamic Analysis of Inelastic Frame Structures", by
F. L. Porter and G. H. Powell - 1971 (PB 210 135)

"Research Needs in Limit Design of Reinforced Concrete Structures",
by V. V. Bertero - 1971 (pPB 202 943)

"Dynamic Behavior of a High-Rise Diagonally Braced Steel Building",
by D. Rea, A. A. Shah and J. G. Bouwkamp - 1971 (PB 203 584)

"Dynamic Stress Analysis of Porous Elastic Solids Saturated With
Compressible Fluids", by J. GChaboussi and E. L. Wilson - 1971
(PB 211 396)

"Inelastic Behavior of Steel Beam-to-Column Subassemblages"”, by
H. Krawinkler, V. V. Bertero and E. P. Popov - 1971 (pB 211 335)

"Modification of Seismograph Records for Effects of Local Soil
Conditions" by P. Schnabel, H. B. Seed and J. Lysmer - 1971
(PB 214 450)

"Static and Earthquake Analysis of Three Dimensional Frame and Shear
Wall Buildings" by E. L. Wilson and H. H. Dovey = 1972 (PB 212 589)

"Accelerations in Rock For Earthquakes in the Western United States",
by P. B. Schnabel and H. B. Seed - 1972 (PB 213 100}

"Elastic-Plastic Earthquake Response of Soil-Building Systems"
by T. Minami and J. Penzien - 1972 (PB 214 868)

"Stochastic Inelastic Response of Offshore Towers to Strong
Motion Earthquakes", by M. K. Kaul and J. Penzien - 1972 (pPB 215 713)

Cyclic Behavior of Three Reinforced Concrete Flexural Members
With High Shear" by E. P. Popov, V. V. Bertero and H. Krawinkler -
1972 (PB 214 555)

"Earthqdake Response of Gravity Dams Including Reservoir Interaction
Effects" by P. Chakrabarti and A. K. Chopra - 1972.

"Dynamic Properties of Pine Flat pam", by D. Rea, C. Y.Liau and
A. K. Chopra - 1972.

EERC 72-8 "Three Dimensional Analysis of Building Systems", by E.L. Wilson
and H.H. Dovey - 1972,

EERC 72-9 "Rate of Loading Effects on Uncracked and Repaired Reinforced
Concrete Members", by V.V. Bertero, D. Rea, S. Mahin and
M. Atalay - 1973

EERC 72-~-10 "Computer Program for Static and Dynamic Analysis of Linear
Structural Systems", by E.L. Wilson, K.J. Bathe, J.E. Peterson]
and H.H. Dovey - 1972.

EERC 72-11 "Literature Survey - Seismic Effects on Highway Bridges" by T.
Iwasaki, J. Penzien and R. Clough - 1972 (PB 215 613)

EERC 72-12 "SHAKE, a Computer Program for Earthquake Response Analysis of
Horizontally Layered Sites", by P.B. Schnabel and J. Lysmer - 1972.

EERC 73-1 "Optimal Seismic Design of Multistory Frames", by V.V. Bertero and
H. Kamil - 1973,

EERC 73-2 "Analysis of the Slides in the San Fernando Dams During the
Earthquake of February 9, 1971", by H.B. Seed, K.L. Lee, I.M. Idriss
and F. Makdisi - 1973.

EERC 73-3 "Computer Aided Ultimate Load Design of Unbraced Multistory Steel
Frames", by M.B. El-Hafez and G.J. Powell - 1973.

EERC 73-4 "Experimental Investigation into the Seismic Behavior of Critical
Regions of Reinforced Concrete Components as Influenced by Moment
and Shear"”, by M. Celebi and J. Penzien - 1973 (PB 215 884)

EERC 73-5 "Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams",
by M. Celebi and J. Penzien - 1973.

EERC 73-6 "General Purpose Computer Program for Inelastic Dynamic Response
of Plane Structures”, by A. Kanaan and G.H. Powell - 1973.

EERC 73-7 "A Computer Program for Earthquake Analysis of Gravity Dams Including
Reservoir Interaction", by P. Chakrabarti and A.K. Chopra ~ 1973.

EERC 73-8 "Seismic Behavior of Spandrel Frames — A Review and Outline for
Future Research", by R. Razani and J.G. Bouwkamp - 1973.

o -
"’EERC 73-9 "Earthquake Analysis of Structure-Foundation Systems", bygf;_éz:)
(_______\\\~X?ish and A. K. Chopra - I973.—

EERC 73-10 '"Deconvolution of Seismic Response for Linear Systems", by
R. B. Reimer - 1973.

EERC 73-11 "SAP IV Structure Analysis Program for Static and Dynamic Response
of Linear Systems'", by K. -J. Bathe, E. L. Wilson, and F. E.
Peterson - 1973 (revised).

EERC 73-12 "Analytical Investigations of the Seismic Response of Tall
Flexible Highway Bridges'", by W. S. Tseng and J. Penzien - 1973,

————

EERC 73-13 "Earthquake Analysis of Multi-Story Buildings Including Foundation
Interaction", by A. K. Chopra and J. A. Gutierrez - 1973 (PB 222 970).
S
EERC 73-14 "ADAP A Computer Program for Static and Dynamic Analysis of Arch
Dams", by R. W. Clough, J. M. Raphael and S. Mojtahedi - 1973
(PB 223 763/AS).

EERC 73-15 "Cyclic Plastic Analysis of Structural Steel Joints", by

__R. B. Pi d R. W. Clough - 1973.
N

Jtﬁx EERC 73-16 "QUAD-4 A Computer Program for Evaluating the Seismic Response of
Soil Sgructyres by Variable Damping Finite Element Procedures"
by 1. M. Idriss, J. Lysmer, R. Hwang and H. G. Seed - 1973. (,//

EERC 73-17 "Dynamic Behavior of a Multi-Story Pyramid Shaped Building",
by R. M. Stephen and J. G. Bouwkamp - 1973.

EERC 73-18 "Effect of Different Types of Reinforcing on Seismic Behavior
of Short Concrete Columns", by V. V. Bertero, J. Hollings,
0. Kustu, R. M. Stephen and J. G. Bouwkamp - 1973.

EERC 73-19 "0live View Medical Center Material Studies, Phase 1", by
B. Bresler and V. Bertero - 1973.

EERC 73-20 "l,inear and Nonlinear Seismic Analysis Computer Programs for
Long Multiple-Span Highway Bridges'", by W. S. Tseng and
J. Penzien - 1973.

EERC 73-21 "Constitutive Models for Cyclic Plastic Deformation of Engineering
Materials", by J. M. Kelly and P. P. Gillis - 1973.

EERC 73-22 "DRAIN-2D Users' Guide" by G. H. Powell - 1973.

EERC 73-23 "Earthquake Engineering at Berkeley - 1973" by D. Rea - 1973.

EERC 73-24 "Seismic Input and Structural Response During the 1971 San

Fernando Earthquake" by R. B. Reimer, R. W. Clough, and
J. M. Raphael - 1973.

e e o e = s e ey —_

y%? EERC 73-25 "Earthquake Response of Axisymmetric Tower Structures Surrou;;;;\7

by Water", by C. Y. Liaw and A. K. Chopra - 1973. .

EERC 73-26 "Investigation of the Failures of the Olive View Stairtowers
During the San Fernando Earthquake and Their Implications on
Seismic Design", by V. V. Bertero and Robert G. Collins - 1973.

EERC 73-27 "Further Studies on Seismic Behavior of Steel Beam-Column
Subassemblages" by V. V. Bertero, H. Krawinkler and E. P. Popov -
1973.

APPENDIX E: Parallel FORTRAN Listing of PV-8AP Code

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

Force sap of NNP ident me
Shared integer iops(8),iopf (8)
K%k kk dk kk sk dk kk kk Rk dok Xk ek kK ek Sk kk kk %

SAPL
A STRUCTURAL ANALYSIS PROGRAM
FOR STATIC AND DYNAMIC RESPONSE OF LINEAR SYSTEMS

K.J. BATHE , E.L. WILSON , F.E. PETERSON
UNIVERSITY OF CALIFORNIA , BERKELEY

IBM CONVERSION BY UNIVERSITY OF SOUTHERN CALIFORNIA
AUGUST, 1973
REVISED JULY, 1974

gk ek dk Kk kk kk Kk ek kk ke ek ke Xk kk k% kk kk R

IMPLICIT REAL*8 (A-H,0-2)

Shared REAL T,TT

Shared REAL TT
Shared COMMON /JUNK/HED (12) , JUK (LO6)
Shared COMMON /ELPAR/NPAR(]#),NUMNP.MBAND,NELTYP,N],N2.N3,Nh,N5,
& mtot,neq
Shared COMMON /EM/QQQ (28L46)
Shared COMMON /DYN/IDU5(11) ,NDYN
Shared COMMON /TAPES/NQQ (6)
Shared COMMON /EXTRA/MODEX.NTB,NlOSV,NT]O.KEQB.NUMEL,T(10)
Shared COMMON /SOL/NBLOCK.NEQB.LL,NF,IDUM,NEIG,NAD.NVV,ANORM,NFO
c common /maybe/ dxx (50) ,dyy (50) ,dzz (50) ,ee (50) ,aa (50)
Shared common /say/neqq,numee,loopur,nnblock,nterms,option
Shared common /what/naxa (10000) , i row1 (10000) , i colh (10000)

OO0 OO0 0O000

o
c PROGRAM CAPACITY CONTROLLED BY THE FOLLOWING TWO STATEMENTS ...
C

Shared COMMON /one/A (7500001)

Shared common /time/ t1(8),t2(8),t3(8)
Shared integer kdyn
End declarations
MTOT= 7500000
Barrier
c read option for parallel eqn solver if option is 1 then solve
c sim. eqns by parallel subroutine if O solve it by original sap
read (5,%) option
End barrier

c
c USE THE IBM FORTRAN EXTENDED ERROR HANDLING FACILITY TO
C ELIMINATE PRINTOUT OF UNDERFLOW ERROR MESSAGE (ERROR NUMBER 208)
C
Chkk CALL ERRSET (208,256,-1,1)
c
c
Cedek CALL STIME
c

loopur=9
nsf=13

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

NT8 = 8
rewind 14
REWIND NT8
NT10= 10
REWIND NTI10
N1=1
rewind 13
5 222xg=0.
C

C PROGRAM CONTROL DATA

C

Chedek 5 CALL TTIME(T(1)) !5 IS TRANSFERED TO THE NEXE LINE
t (1) =second ()

READ (5,100,END=990) HED,NUMNP,NELTYP,LL,NF,NDYN,MODEX,NAD,
] KEQB,N10SV

IF (MODEX.GT.0) MODEX = |

IF (NUMNP.EQ.0) go to 1999

WRITE (6,200) HED,NUMNP,NELTYP,LL,NF,NDYN,MODEX,NAD,KEQB,N10SV
IF (KEQB.LT.2) KEQB = 99999

'F (NDYN.NE.O) LL=1

IF(LL.GE.1) GO TO 10

WRITE (6,300)

go to 1999

Cx%% DATA PORTHOLE SAVE
10 IF (MODEX.EQ.1)

*WRITE (NT8) HED,NUMNP ,NELTYP,LL,NF,NDYN
c
KDYN = |ABS (NDYN) +1
IF(KDYN.LE.5) GO TO 14
WRITE (6,310) NDYN
go to 19993
o
o RE-START MODE ACTIVATED IF NDYN.EQ.-2 OR NDYN.EQ.-3
(o
14 1F (NDYN.LT.O0) GO TO 20
o
o I NPUT JOINT DATA
o
N2=N1+6%NUMNP
N3=N2+NUMNP
N4=N 3+NUMNP
N5=NL+NUMNP
N6=N5+NUMNP
IF (N6.GT.MTOT) CALL ERROR (N6-MTOT)
C
CALL INPUTJ(A(N]),A(NZ),A(N3),A(Nk),A(N5).NUHNP,NEQ)
c
(o FORM ELEMENT STIFFNESSES
c
Chedkk CALL TTIME(T(2))
t (2) =second ()
c

MBAND=0

FILE:

Cosesk

OO0 OO0

o N e

OO0

900

690

700

PSAP FRC A OLD DOMINION UNIVERSITY

NUMEL=0
REWIND 1
REWIND 2

DO 900 M=1,NELTYP

READ (5,1001) NPAR

DATA PORTHOLE SAVE

|F (MODEX.EQ.1) WRITE (NTB) NPAR
WRITE (1) NPAR
NUMEL=NUMEL+NPAR (2)
MTYPE=NPAR (1)

CALL ELTYPE (MTYPE)

CONTINUE
neqg=neq
numee=nume |

DETERMINE BLOCKS I ZE
ADDSTF
NEQB= (MTOT - 4*LL)/(MBAND + LL + 1)/2

OVER-RIDE THE SYSTEM MATRIX BLOCKSIZE WITH THE INPUT (NON-ZERO)
VALUE, KEQB.

THIS OVER-RIDE ENTRY IS TO ALLOW PROGRAM CHECKING OF MULTI-
BLOCK ALGORITHMS WiTH WHAT WOULD NORMALLY BE ONE BLOCK DATA.

|F (KEQB.LT.NEQB) NEQB = KEQB
GO TO (690,700,700,700,730), KDYN
STATIC SOLUTION

CONTINUE
NEQB 1= (MTOT - MBAND) / (2% (MBAND+LL) + 1)
NEQB2= (MTOT - MBAND - LL* (MBAND-2)) / (3*%LL + MBAND + 1)
IF (NEQB1.LT.NEQB) NEQB=NEQBI
IF (NEQB2.LT.NEQB) NEQB=NEQB2
NBLOCK = (NEQ-1) /NEQB +1
| F(NEQB.GT.NEQ) NEQB=NEQ
negb=neq
nblock=1
GO TO 790

EIGENSOLUTION
1. DETERMINANT SEARCH ALGORITHM

IF (NEQB.LT.NEQ) GO TO 710
NIiM=3

NC=NF + NIM

NVM=6

NCA=NEQ*MAXO (MBAND,NC)

FILE: PSAP FRC A~ OLD DOMINION UNIVERSITY

NTOT=NCA + LXNEQ + 2%NVM*NEQ + 5*NC
NEIG=0
IF (NTOT.LE.MTOT) GO TO 720

©

2. SUBSPACE ITERATION ALGORITHM

710 NV=MINO (2%NF ,NF+8)
{F (NAD.NE.O) NV=NAD
NEQB 1= (MTOT - MBAND)/ (2%MBAND + 1)
NEQB2=(MTOT - MBAND - 2%NV - NV* (MBAND-2))/ (3*NV + MBAND + 1)
NEQB3= (MTOT - 3XNVANV - 3*NV)/ (24NV + 1)
NEQB4= (MTOT - 6%NV) /(1 + MBAND)
IF (NEQB1.LT.NEQB) NEQB=NEQBI
IF (NEQB2.LT.NEQB) NEQB=NEQB2
IF (NEQB3.LT.NEQB) NEQB=NEQB3
IF (NEQBL.LT.NEQB) NEQB=NEQBA4
NEIG=1

720 CONTINUE
NBLOCK = (NEQ-1)/NEQB +1
IF (NEQB.GE.NEQ) NEQB=NEQ

c
C HISTORY OR SPECTRUM ANALYSIS
C
KREM = 1000
NTOT = NBLOCK*NEQB*NF + KREM
IF (MTOT.LT.NTOT)
*WRITE (6,320)
GO TO 790
C
c STEP-BY-STEP DIRECT INTEGRATION
c
730 CONTINUE
c DISPLACEMENT COMPONENTS FOR DIRECT OQUTPUT (*NSD*)
NN2 = NEQ
c DISPLACEMENT COMPONENTS REQUIRED FOR RECOVERY OF ALL OF THE
c REQUESTED ELEMENT STRESS COMPONENTS (%NSS%)
NN3 = NEQ
c
o 1. DECOMPOSITION
c
NEQB1 = (MTOT-NN2-NN3-NEQ-MBAND) / (2*MBAND+1)
C)
C 2. TIME INTEGRATION PHASE
c
NEQB2 = (MTOT-MBAND-2%* (NN2+NN3) -5%NEQ) / (MBAND+1)
c
[F(NEQB1.LT.NEQB) NEQB = NEQBI
IF(NEQB2.LT.NEQB) NEQB = NEQB2
IF (NEQB.GT.NEQ) NEQB = NEQ
NBLOCK = (NEQ-1) /NEQB +1
c
c 3. INPUT PHASE
o
c NUMBER OF TIME FUNCTIONS (*NFN%*)

FILE: PSAP FRC A QLD DOMINION UNIVERSITY

NN2 = 10
C MAX1MUM NUMBER OF FUNCTION DEFINITION POINTS (XMXLP*)
NN3 = 40
C
NNL = 6%NUMNP + 2*NN2*NEQ
IF (NNL.GT.MTOT)
*WRITE (6,320)
NNL4 = NEQ*Z*(NN2+I) + NN2% (1+2%NN3)
IF (NNL.GT.MTOT)
*WRITE (6,320)
C
790 CONTINUE
(o
C I NPUT NODAL LOADS
C
N3=N2+NEQB*LL
NL=N3+6%LL
WRITE (6,201) NEQ,MBAND,NEQB,NBLOCK
c
CHk CALL TTIME (T(3))
t (3) =second ()
C
c write(6,%) '# negb,11,n2,n3',neqb,11,n2,n3
CALL INL(A(N1),A(NZ);A(N3),A(N“),NUMNP,NEQB,LU
cl do 16 1=n2,n3
clé write(6,%) '# a(n2)',a(1)
C
C stk CALL TTIME (T(4))
t (4) =second ()
C
C FORM TOTAL STIFFNESS
C
NE2B=2%NEQB
N2=N1+NEQB*MBAND
N3=N2+NEQB*LL
N4=N3+hL*LL
NN2=N1+NE2B*MBAND
NN3=NN2+NE2B*LL
NNL4=NN3+L4*LL
if (option.eq.1.) call column
c nn2=nl+nterms
c nn3=nn2+neq¥*i|
c nnbk=nn3+4*11
ntr=nterms
c
CALL ADDSTF (A(N]),A(NNZ).A(NN3),A(NN#),NUHEL.NBLOCK,NEZB,LL,MBAND
1, ANORM, NVV)
if (option.eq.1.) then
nl=1

nm2=nl+nterms
nnn3=nn2+neq*li
icount=nm2

do 126 ii=nn2,nnn3-1

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

a(icount)=a(ii)
icount=icount+]

126 continue
call assm(a(nl),a(nm2),11,nterms, neq)
endif
c write{(6,%)'# nn2,nn3',nn2,nn3
c do 17 I=nl,ntr
c17 write(6,%)'# a(ntr)',a (1)
C
Chekek CALL TTIME(T (5))
t (5) =second ()
C
c SOLUT I ON PHASE
C
End barrier

20 GO0 TO (30,40,50,60,70), KDYN
C
C STATIC SOLUTION
C

30 |F(MODEX.EQ.0) GO TO 32

DO 31 I=6,10
31 T(1) = T(5)
GO TO 90

C
32 222x=0.

c 32 FORCECALL SOLEQ
Forcecall SOLEQ
Ciesx CALL TTIME(T(6))
CCCCCCCVVVBBNM the following barrier bkock is transfered fromm the end
Barrier
TT = 0.0
DO 195 1=1,9
TU) =T+ -T(1)
TT =TT + T(I)
195 CONTINUE

o
WRITE (6,203) (T(K),K=1,9),TT
C
End barrier
Join
Barrier
t (6) =second ()
DO 33 I=7,10
33 7(1) = T(6)
GO TO 9¢C
c
C EIGENVALUE EXTRACTION
C
End barrier
Lo continue
Barrier
T(6) = T(5)
CALL SOLEIG
Cheske CALL TTIME(T (7))

t (7) =second ()

FILE:

(@}

50

Gk

52
53

56

Chkx

(@}

60

Chkk

62
63

66
6h
C sk

PSAP FRC A OLD DOMINION UNIVERSITY
T(8) =T(7)

T(9) = T(7)

T(i0)= T(7)

GO TO 90

FORCED DYNAMIC RESPONSE ANALYSIS

End Barrier

continue

Barrier
T(6) = T(5)
If (NDYN.LT.0) GO T0 52
CALL SOLEIG

CALL TTIME (T(7))

t (7) =second ()

GO TO 54
DO 53 1=1,6
TO+1)=T()
REWIND 2
READ (2) NEQ.NBLOCK,NEQB,MBAND,NI,NF.(QQQ(I),I=1.NF)
REWIND 7
| MAX=NEQB*NF
READ (7) (A(1),1=1,NF)
DO 56 L=1,NBLOCK
READ (7) (A(1),1=1,1MAX)
CALL HISTRY

CALL TTIME (T(8))

t (8) =second ()

T@Q) = T(8)
T(10)= T(8)
GO TO 90

RESPONSE SPECTRUM ANALYSIS

End barrier

continue

Barrier
T®) = T(5)
IF (NDYN.LT.O0) GO TO 62
CALL SOLEIG

t (7) =second ()

CALL TTIME (T(7))
T@8) = T(7)
GO TO 6L
DO 63 I=1,7
T+1)=T()
REWIND 2
READ (2) NEQ,NBLOCK,NEQB,MBAND,N1,NF
REWIND 7
I MAX=NEQB*NF
READ (7) (A(1),1=1,NF)
DO 66 L=1,NBLOCK
READ (7) (A(1),1=1,1MAX)
CALL RESPEC
CALL TTIME (T(9))

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

t (9) =second ()

T(10)= T(9)
GO TO 90
C
C STEP-BY-STEP (DIRECT INTEGRATION) ANALYSIS
o
End barrier
70 continue
Barrier
DO 71 1=6,9
71 7(1) = 1(5)
CALL STEP
Coekxk CALL TTIME(T (10))
t (10) =second ()
C
C COMPUTE AND PRINT OVERALL TIME LOG
o
End barrier
90 continue
Barrier
TT = 0.0
DO 95 i=1,9
T) = TU+1)-T()
TT = TT + T(1)
95 CONTINUE
C
WRITE (6,203) (T(K),k=1,9),TT
C

End barrier
GO TO 5
¢ 990 continue
c1999 continue
o
100 FORMAT (12A6/915)
200 FORMAT (1H1,12A6///

1 384 CONTROL I NFORMATI ON, // kX,
2 27H NUMBER OF NODAL POINTS =, |5 / LX,
3 27H NUMBER OF ELEMENT TYPES =, |5 / X,
L 27H NUMBER OF LOAD CASES =, |15 / kX,
5 27H NUMBER OF FREQUENCIES =, 15 / kX,
6 27H ANALYSIS CODE (NDYN) =, 15 / ux,
7 16H £EQ.0, STATIC, / bX,
8 26H EQ.1, MODAL EXTRACTION, / hX,
9 25H EQ.2, FORCED RESPONSE, / kX,
A 27H £Q.3, RESPONSE SPECTRUM, / uX,
* 28H EQ.4, DIRECT INTEGRATION, / LX,
B 27H SOLUTION MODE (MODEX) =, |5 / kX,
C 194 £Q.0, EXECUTION, / 4X,
D 20H EQ.1, DATA CHECK, / bX,
E 19H NUMBER OF SUBSPACE, / kX,
F27H ITERATION VECTORS (NAD) =, |5 / kX,
G 27H EQUATIONS PER BLOCK =, |5 / kX,
H 27H TAPE10O SAVE FLAG (N10SV) =, 15 / &X)

201 FORMAT (38HIE Q UAT I ON PARAMETERS, //
* 34H TOTAL NUMBER OF EQUATIONS =,15,

F

c

C

c

ILE:

203

300
310
320

1001

990
1999

c

OO0 0

[}

800

PSAP FRC A OLD DOMINION UNIVERSITY

1 /34K BANDWIDTH =,15,
2 /34H NUMBER OF EQUATIONS IN A BLOCK =,15,
3 /34H NUMBER OF BLOCKS =,15)
FORMAT (TH1,31HOVER AL L T I ME LOG, //

1 5X,30HNODAL POINT INPUT =, F8.2 /

2 5X,30HELEMENT STIFFNESS FORMATION =, F8.2 /

3 5X,30HNODAL LOAD INPUT =, F8.2 /

L 5X,30HTOTAL STIFFNESS FORMATION =, F8.2 /

5 5X,30HSTATIC ANALYSIS =, F8.2 /

6 5X,30HEIGENVALUE EXTRACTION =, F8.2 /

7 5X,30HFORCED RESPONSE ANALYSIS =, F8.2 /

8 5X,30HRESPONSE SPECTRUM ANALYSIS =, F8.2 /

% 5X,30HSTEP-BY-STEP INTEGRATION =, F8.2 //
g 5X,30HTOTAL SOLUTION TIME =, F8.2 /)

FORMAT (// L8H %% ERROR. (AT LEAST ONE LOAD CASE IS REQUIRED)
FORMAT (// 33H %% ERROR. ANALYS!IS CODE (NDYN =,13,9H) 1S BAD.
FORMAT (// L7H ** WARNING. ESTIMATE OF STORAGE FOR A DYNAMIC,
| 32H ANALYSIS EXCEEDS AVAILABLE CORE, // 1X)

FORMAT (1L15)
End barrier
continue
continue
Join
END
SUBROUTINE CALBAN (MBAND,NDIF,LM.XM,S.P,ND,NDM,NS)
IMPLICIT REAL*8 (A-H,0-2)

CALLED BY? RUSS,TEAM,PLNAX,BRICK8,TPLATE,CLAMP,ELST3D,PIPEK

-CALCULATES BAND WIDTH AND WRITES STIFFNESS MATRIX ON TAPE 2
DIMENSION LM(I),XM(]).S(NDM,NDM).P(NDM,&)

COMMON /EXTRA/ MODEX,NTB, I FILL (14)

common /say/ neqq, numee, 1oopur,nnblock,nterms,option
common /what/ naxa (10000) ,irowl (10000) , icolh (10000)

write(f,%)' sub calban starts'

neq=neqq

nume=numee

MIN=100000

MAX=0

Do 800 L=1,ND

IF (LM(L) .EQ.0) GO TO 800

IF (LM (L) .GT.MAX) MAX=LM (L)

1F (LM(L) .LT.MIN) MIN=LM (L)

CONTINUE

ND | F=MAX-MIN+1

if (NDIF.GT.MBAND) MBAND=NDIF

IF (MODEX.EQ.1) GO TO 810

LRD=ND* (ND+1) /2+5%ND -
WRITE (2) LRD,ND,(LM(I),I=1,ND),((S(I,J),J-l,ND),I=1,ND).
1 ((P(1,Jd),1=1,ND),J=1,4), (XM(1),1=1,ND)
write(14)1rd,nd, (Im(i),i=1,nd)
rewind 13

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

write(13) ((s(i,j),j=1,nd),i=1,nd)
moayyad
write(6,%)' sub. calban....... !
write(6,%) 'Ird,nd, (Im(i),i=1,nd), ((s(i,j),j=1(=i),nd),i=1,nd)"’
write(6,%) ' ((p(i,j),i=1,nd),j=1,4), (xm(i),i=1,nd)"’
write{(6,%)' Ird nd',lrd,nd
write(6,%) '=== s =%% !
write(6,115) ((s(i,j),j=1,nd),i=1,nd)
write(6,%)") i
write(6,115) ((p(i,j),i=1,nd),j=1,4)
write(6,%)' Xm *!
write(6,115) (xm(i),i=1,nd)
write(6,%) '== === :
format (6el2.5)
c write(6,%*) 'sub calban ends'
Fedededkde dede ook sk sk Aok sk e de e e dede ok ok ek e e ek ok ek e ok ke ek e e de ek VVVVVVVVVVY
c initialize all row length (include the diagonal)
c do 1 i=1,neq
cl irowl (i) =0
c do 2 i=1,nume
maxdof=0
do 3 ji=1,nd
Jjjr=mm@gn)
if(jjl.gt.maxdof) maxdof=j]1
3 continue
c find the current row length and update the row length
do 4 ji=1,nd
jjl=m(n
if (jjl.eq.0) go to &
nowr l=maxdof-jj1+]
if(nowrl.gt.irowl (jj1))irowl (jj1)=nowrl
c write(6,%)' jj1 irowl nd nume...calb',jjl,irowl (jj1),nd,nume
4 continue
c2 continue
CANNNNNNANNNANANNANANANRNRNNNNNNANANA
RETURN

O 00000000000

\n

o
810 WRITE (1) ND,NS, (LM(1),!=1,ND)
RETURN
END
feededededokdeddededoddoddedoddeddodek Fodod dedededede Rk dedededk ok ddeokdede dedededede dede R dode e e e ke de e ek ek e ok

SUBROUTINE ELTYPE (MTYPE)

C

c IMPLICIT REAL*8(A-H,0-2)

o

C CALLED BY? MAIN,STRESS

c

c common /maybe/ dxx (50) ,dyy (50) ,dzz (50) ,ee (50) ,aa (50)
common /say/ neqq,numee, loopur,nnblock,nterms,option
common /what/ naxa (10000), irowl (10000),icolh {(10000)
Go T0o (0,2,3,4,5,6,7,8,9,10,11,12) ,MTYPE

C

C THREE DIMENSIONAL TRUSS ELEMENTS

C

c write(6,%)' sub eltype begins'

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

1 CALL TRUSS

GO TO 900
c
c THREE DIMENSIONAL BEAM ELEMENTS
c
2 CALL BEAM
GO TO 900
C
c PLANE STRESS ELEMENTS
C
3 CALL PLANE
GO TO 900
c
c AXISYMMETRIC SOLID ELEMENTS
c
L CALL PLANE
GO TO 900
C
c THREE DIMENSIONAL SOLID ELEMENTS
c
5 CALL THREED
GO TO 900
C
c PLATE BENDING ELEMENTS
c
6 CALL SHELL
GO TO 900
c
C
7 CALL BOUND
GO TO 900
C
c THICK SHELL ELEMENTS
C
8 CALL SOL21
GO TO 900
c
9 WRITE (6,100) MTYPE
GO TO 900
c
10 WRITE (6,100) MTYPE
GO0 TO 900
c
11 WRITE (6,100) MTYPE
GO TO 900
c
c STRAIGHT OR CURVED PIPE ELEMENTS
c
12 CALL PIPE
C
c900 write(6,%)' sub. eltype ends'
900 RETURN
c

100 FORMAT ('OELEMENT',IL,' 1S NOT IMPLEMENTED YET')
END

FILE:

PSAP FRC A OLD DOMINION UNIVERSITY

Fedededede ek oe ok ke ek dodk otk dkde e e e e e ke ok o e ok e v e e e b e e e e o ook o ok ok o o o ko e ok e e ok o sk

OOOOOOOO0O0 0

750
50

100

150

180
190

200
300

Loo

500
600

610

SUBROUTINE INL(ID,B,TR, TMASS,NUMNP,NEQB, LL)
IMPLICIT REAL*8 (A-H,0-2)

CALLED BY? MAIN

INPUT NODAL LOADS AND MASSES

DIMENSION 1D (NUMNP,6) ,B(NEQB,LL) ,TR(6,LL) ,TMASS (NEQB)
COMMON / JUNK / R(6) ,TXM(6),IFILL (406)
COMMON /EXTRA/ MODEX,NT8,IFILL2 (14)

write(6,%)' sub inl begins'
NT=3
REWIND NT
KSHF=0
WRITE (6,2002)
I|F (WODEX.EQ.1) GO TO 50
DO 750 1=1,NEQB
TMASS (1) =0.
DO 750 K=1,LL
B8(l1,K)=0.0

DO 900 NN=1,NUMNP

DO 100 I=1,6
TXM(1)=0.

DO 100 J=1,LL
TR(1,J)=0.0

IF (NN.EQ.1) GO TO 300
IF (N.NE.NN) GO TO 40O
DO 200 I=1,6

IF (L) 180,180,190
TXM (1) =R (1)

GO TO 200
TR(I,L)=R(I)

CONT INUE

READ (5,1001) N,L,R
IF (N.EQ.0) GO TO 150
WRITE (6,2001) N,L,R
GO TO 150

IF (MODEX.EQ.1) GO TO 900

DO 800 J=1,6

I 1=1D (NN, J) -KSHF

IF (1t) 800,800,500

DO 600 K=1,LL

B(I1,K)=TR(J,K)

TMASS (11) =TXM (J)

IF(11.NE.NEQB) GO TO 800

write(6,%)' nt',nt

WRITE (NT) B,TMASS
rewind 13

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

c write(13) b,tmass

c do 29 n=1,neqgb

c29 write(6,%)' load b', (b(n,m) ,m=1,11)
KSHF=KSHF+NEQB
D0 700 1=1,NEQB
TMASS (1) =0.

DO 700 K=1,LL
700 B(I,K)=0.0
800 CONTINUE

900 CONTINUE

C
{f (MODEX.EQ.1) RETURN
C
WRITE (NT) B,TMASS
¢ write(13)b, tmass
c do 19 i=1,neqgb
cl9 write(6,%)' load b',(b(i,j),j=1,ll)
C
¢ write(6,%)' sub inl ends'

RETURN
1001 FORMAT (215,7F10.4)
2001 FORMAT (2(3X,I4),6E15.5)
2002 FORMAT (LJHINOD AL L O
A 290HM A S S E S (D
B 3X,4HNODE, 3X, 4bHLOAD,
1 2(9X,6HX-AX1S,9X,6HY-AX1S,9X,6HZ-AX1S), / TH NUMBER,3X,LHCASE,
2 3(10X,5HFORCE), 3 (9X,6HMOMENT), / 1X)
END
fc*:’t**:’c*****:'dc*******7‘:*************k***k********k****************

SUBROUTINE INPUTJ (1D,X,Y,Z,T,NUMNP,NEQ)

ADS (STAT I C) OR ,
YNAMIC, ///

c
c IMPLICIT REAL*8(A-H,0-2)
c
C CALLED BY? MAIN
c
DIMENSION X(1),Y(1),Z(1),10(NUMNP,6),T (1)
o)
COMMON /EXTRA/ MODEX,NT8,IFILL(14)
c
C---- SPECIAL NODE CARD FLAGS
o
C IT = COORDINATE SYSTEM TYPE (CC 1, ANY NODE CARD)
o EQ.C, CYLINDRICAL
o (PR = PRINT SUPPRESSION FLAG (CC 6, CARD FOR NODE 1 ONLY)
o EQ. , NORMAL PRINTING
c EQ.A, SUPPRESS SECOND PRINTING OF NODAL ARRAY DATA
c EQ.B, SUPPRESS PRINTING OF 1D-ARRAY
C EQ.C, BOTH %A% AND *B¥
o
DIMENSION IPRC (4)
o
DATA [PRC/1H , 1HA, 1HB, 1HC/
C

write(6,%)' sub. inputj begins....'

IPR = IPRC(1)

0

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

RAD = ATAN(1.0D0) /L5.0D0

C---- READ OR GENERATE NODAL POINT DATA====-- oo o cceccceee e

WRITE (6,2000)
WRITE (6,2001)
NOLD=0

10 READ (5,1000) [T,N,JPR, (ID(N,1),1=1,6),X(N),Y(N),Z(N),KN,T(N)
WRITE (6,2002) IT,N,JPR, (ID(N,1),1=1,6),X(N),Y(N),Z(N),KN,T(N)
[F(N.EQ.1) IPR = JPR
IF(IT.NE.IPRC(L)) GO TO 15
DUM = Z(N) * RAD
Z(N) = X(N)*CO0S (DUM)
X(N) = X(N)*SIN(DUM)

15 CONT!INUE
IF (NOLD.EQ.0) GO TO 50

C----- CHECK IF GENERATION IS REQUIRED-========= - mm oo

DO 20 I=1,6
IF(ID(N,1) .EQ.O.AND. 10 (NOLD, I) .LT.0) ID(N,!)=1D(NOLD,!)

20 CONTINUE
IF (KN.EQ.0) GO TO 50
NUM= (N-NOLD) /KN
NUMN=NUM- |
IF (NUMN.LT.1) GO TO 50
XNUM=NUM
DX= (X (N) =X (NOLD)) /XNUM
DY= (Y (N) -Y (NOLD))} /XNUM
DZ=(Z (N) -Z (NOLD)) /XNUM
DT= (T (N) -T (NOLD)) /XNUM
K=NOLD
DO 30 J=1,NUMN
KK=K
K=K+KN
X (K) =X (KK) +DX
Y (K) =Y (KK) +DY
Z (K)=Z (KK) +DZ
T (K) =T (KK) +DT
D0 30 I=1,6
(D(K,1)=1D (KK, 1)
IF (ID(K,!).GT.1) ID(K,I)=1D(KK,!)+KN

30 CONTINUE

50 NOLD=N
IF (N.NE.NUMNP) GO TO 10

C-=~= PRINT ALL NODAL POINT DATA======= === oo

AF(IPR.EQ.IPRC(2) .OR. IPR.EQ.IPRC(L)) GO TO 52

WRITE (6,2003)

WRITE (6,2001)

WRITE (6,2005) (N, (ID(N,1),1=1,6),X(N),Y(N),Z(N),T(N),N=1,NUMNP)
52 CONTINUE

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

NEQ=0
DO 60 N=1,NUMNP
DO 60 I=1,6
ID(N,1)=1ABS (1D (N, 1))
IF (ID{N,1)=-1) 57,58,59
57 NEQ=NEQ+]
1D (N, 1) =NEQ
GO TO 60
58 ID(N,1)=0
GO TO 60
59 ID(N,1)==1D(N, 1)
60 CONTINUE

C---- PRINT MASTER INDEX ARRAY

|F (IPR.EQ.IPRC(3) .OR. IPR.EQ.IPRC(4)) GO TO 62
WRITE (6,2004) (N, (1ID(N,1),1=1,6) ,N=1,NUMNP)
62 CONTINUE

|F (MODEX.EQ.0) GO TO 70

C#x%% DATA PORTHOLE SAVE
WRITE (NT8) ((ID(N,1),1=1,6) ,N=1,NUMNP)
WRITE (NT8) (X (N),N=1,NUMNP)
WRITE (NT8) (Y (N),N=1,NUMNP)
WRITE (NT8) (Z (N) ,N=1,NUMNP)
WRITE (NT8) (T (N),N=1,NUMNP)

ENDFILE NT8
c

REWIND 2

WRITE (2) 1D
c

RETURN
c

70 CONTINUE

REWIND 8

WRITE (8) 1D
c

RETURN
c

1000 FORMAT (2 (A1,14),515,3F10.0,15,F10.0)
2000 FORMAT (//23H NODAL POINT INPUT DATA)
2001 FORMAT (SHONODE 3X 24HBOUNDARY CONDITION CODES 11X,
23HNODAL POINT COORDINATES / 7H NUMBER 2X 1HX LXx THY 4X 1HZ 3X,
. 2HXX 3X 2HYY 3X 2HZZ12X IHX 12X THY 12X THZ 12X THT)
2002 FORMAT (1X,Al,Ik4,A1,13,515,3F13.3,15,F13.3)
2003 FORMAT (//21H1GENERATED NODAL DATA)
2004 FORMAT (//17H1EQUATION NUMBERS/
1 35H N X Y Z XX YY ZZ /(715))
2005 FORMAT (15,615,4F13.3)

END
**
SUBROUTINE RUSS (1D,X,Y,Z,T,E,THERM,DEN, AREA, WT , NUMNP)

IMPLICIT REAL*8 (A-H,0-2)

CALLS? CALBAN
CALLED BY? TRUSS

OO0

FILE:

O OO0

10

C oot

(@]

CHhks

(]

100

120

200

PSAP FRC A OLD DOMINION UNIVERS!ITY

DIMENSION X(l).Y(l),Z(l),ID(NUMNP,l),E(l).THERM(]),DEN(]),AREA(])
s T(1),WT (1)
COMMON /ELPAR/ NPAR(]A),NNNNN,MBAND,NELTYP,N],N2,N3,Nh.N5,MTOT,NEQ
COMMON /EH/LM(Z#),ND,NS,S(Z&,Z&).P(Zb,h),XM(Zh),ST(\Z,Zh),TT(lZ,h)
1 ,IFILL2 (3048)
COMMON /JUNK/ EMUL(A,&).I,J,K,L,M,N.Il,JJ,KK.MTYPE,TEMP.DX,DY.DZ,
1 XLZ,XL,XX,YY.F,FT,FX,FY,FZ,MIN,MAX,NDIF,KKK,TEH,MTYP,IFILL](355)
COMMON /EXTRA/ MODEX,NT8,IFILL3(14)
common /maybe/ dxx (50) ,dyy (50) ,dzz (50) ,ee (50) , aa (50)
common /say/ neqq, numee, loopur,nnblock,nterms,option
common /what/ naxa (10000),irowl (10000),icolh (10000)

CONTROL INFORMATION AND MEMBER PROPERTIES

write(6,%)' sub russ begins'
NUME=NPAR (2)
NUMMAT=NPAR (3)
neqq=neq
numee=nume
WRITE (6,2000) NUME,NUMMAT
WRITE (6,2001)
DO 10 =1,NUMMAT
READ (5,1001) N,E(N),THERM(N) ,DEN(N) ,AREA (N) ,WT (N)
WRITE (6,2002) N,E(N),THERM(N),DEN(N),AREA (N) ,WT (N)
DATA PORTHOLE SAVE
IF (MODEX.EQ.1)

*WRITE (NT8) (E(N),THERM(N) ,DEN(N) ,AREA (N) ,WT (N) ,N=1,NUMMAT)

ELEMENT LOAD MULTIPLIERS

READ (5,1003) EMUL
WRITE (6,2003) EMUL
DATA PORTHOLE SAVE
IF (MODEX.EQ.1)

*WRITE (NT8) EMUL

ELEMENT INFORMATION
WRITE (6,2005)

N=1

READ (5,100L4) M, 11,JJ,MTYP,TEM,KK
IF(KK.EQ.0) KK=1

IF (M.NE.N) GO TO 200

(=11

J=JJ

MTYPE=MTYP

REFT=TEM

KKK=KK

1. FORM ELEMENT STIFFNESS AND STRESS MATRICES

CONTINUE
IF (WODEX.EQ.1) GO TO 380

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

X=X (1) -X(J)
pY=Y (1) -Y (J)
pZ=Z (1) -2 (J)

¢ dxx (m) =dx

dyy (m) =dy

¢ dzz (m) =dz
XL2=DX*DX+DY*DY+DZ%*DZ
XL=SQRT {XL2)
XX=E(MTYPE)*AREA(MTYPE)*XL

c ee (m) =e (mtype)

¢ aa (m) =area (mtype)
ST(1,1)=DX/XL2
ST(1,2)=DY/XL2
ST(1,3)=DZ/XL2
ST(1,4)=-5T(1,1)
ST(1,5)=-ST(1,2)
ST(1,6)=-5T(1,3)

(]

DO 300 L=1,6
YY=ST (1,L) *XX
DO 250 K=L,6
S(K,L)=ST(1,K)*YY
250 S(L,K)=S(K,L)
ST(1,L) =E (MNTYPE) *ST (1,L)
300 ST(2,L)=AREA (MTYPE) *ST (1,L)

c
c 2. INERTIA AND THERMAL LOADS
c
F=WT (KTYPE) *AREA (MTYPE) *XL/2.
TEMP= (T (1)+T (J)) *0.5 - REFT
FT=TEMPATHERM (MTYPE) %E (MTYPE) *AREA (MTYPE)
FT = -FT
FX=DX*FT/XL
FY=DY#FT/XL
FZ=DZ*FT/XL
c

DO 350 L=1,4
TT(2,L) =EMUL (L, &) *FT
TT(1,L)=TT(2,L) /AREA (MTYPE)
P(1,L)=EMUL (L, 1) *F~EMUL (L, L) *FX
P(2,L)=EMUL (L,2) *F-EMUL (L, &) *FY
P(3,L)=EMUL (L, 3) *F-EMUL (L, L) *FZ
P(L,L)=EMUL (L, 1) *F+EMUL (L, b) *FX
P(5,L)=EMUL (L, 2) XF+ERUL (L, L) *FY

350 P (6,L)=EMUL (L, 3) *F+EMUL (L, 4) *FZ
F=DEN (MTYPE) *AREA (MTYPE) #XL/2.
DO 375 L=1,6

375 XM(L) =F

380 CONTINUE

(@]

3. FORM LOCATION MATRIX AND COMPUTE BAND WIDTH

DO LOO L=1,3
LM(L)=ID(I,L)
400 LM(L+3)=1D(J,L)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

ND=6

NS=2

NDM=24

CALL CALBAN (MBAND,NDIF,LM,XM,S,P,ND,NDM,NS)
IF (MODEX.EQ.0) GO TO k10

Cx%%x DATA PORTHOLE SAVE
WRITE (NT8) N,I,J,MTYPE,REFT
GO TO 420
410 CONTINUE

WRITE (1) ND,NS, (LM(L),L=1,ND), ((ST(L,K),L=1,NS),K=1,ND),
1 ((TT(L,K),L=1,NS) ,K=1,4)

c write(6,*)'% nd,ns’',nd,ns

c do 88 1=1,ns

c88 write(6,87)' st', (st (1,k),k=1,nd)
c87 format (6f10.1)

C

C L4, CHECK FOR MORE ELEMENTS

C

L20 CONTINUE
WRITE (6,2004) N,I,J,MTYPE,REFT,NDIF
IF (N.EQ.NUME) RETURN
N=N+1
I=1+KKK
J=J+KKK
IF(N.GT.M) GO TO 100
GO TO 120
C
1001 FORMAT (15,5F10.0)
1003 FORMAT (4F10.0)
1004 FORMAT (415,1F10.0,15)
2000 FORMAT (///25HINUMBER OF TRUSS MEMBERS= 15/
1 25H NUMBER OF DIFF. MEMBERS= 15)
2001 FORMAT (///1X,4HTYPE, 14X, 1HE, 10X,5HALPHA, 12X, 3HDEN, 11X, 4LHAREA
1 11X, 4H WT)
2002 FORMAT (15,5E15.7)
2003 FORMAT (///25H ELEMENT LOAD MULTIPLIERS / 20X, 1HA, 14X, 1HB, 14X, 1HC,
1 14X, 1HD,/6H X-DIRLE15.6/ 6H Y-DIRLE15.6/ 6H Z-DIRLE15.6/
2 6H TEMPLE15.6)
2004 FORMAT (L16,F10.2,17)
2005 FORMAT (///k2H} N I J TYPE TEMP BAND)
END
Fekkdkhhhkhkdhdhhfhhhhhhhhhhhhbhhhiihkhhiokhhfhdekhhkhhkhhkhhdhhhhkkkihk
Forcesub SOLEQ of NNP ident ME
SUBROUTINE SOLEQ
IMPLICIT REAL*8 (A-H,0-2)

CALLS? SESOL,PRINTD,STRESS
CALLED BY? MAIN

STATIC SOLUTION PHASE

OOODO0O0O00O0 0

COMMON /one/A (1)
COMMON /ELPAR/ NP (14) ,NUMNP,MBAND,NELTYP,N1,N2,N3,Nk,N5,MTOT,NEQ
COMMON /SOL / NBLOCK,NEQB,LL,NF,IFILL(7)

FILE:

OO0

Fedek

119

c
c198
c199

PSAP FRC A OLD DOMINION UNIVERSITY

common /say/ neqq,numee, loopur,nnblock,nterms,option
common /what/ naxa (10000),irow! (10000) ,icolh (10000)
common /time/ t1(8),t2(8),t3(8)

dimension bb(100),b(3,1)
integer iops (8),iopf (8)

REAL TT (&)
End declarations

SOLVE FOR THE DISPLACEMENT VECTORS

CALL TTIME(TT(1))
if(me.eq.1) tt(1)=second()
write(6,%) ' sub soleq begins'
Barrier
NSB= (MBAND+LL) *NEQB
NSBB=NEQB*LL* (2+ (MBAND-2) /NEQB)
If (NSBB.LT.NSB) NSBB=NSB
NL=N3+NSBB
Ml = MBAND + NEQB -1
moayyad
if (option.eq.1.) then
do 119 i=1,neqq
irow! (i)=irowl (i) -1
ni=1
n2=ni+nterms
call xload (neqq,11,a(n2))
do 198 il1=1,nterms
write(6,%)' a vector before row9',a(il)
do 199 il=n2,neqq
write(6,%)' load vector before row9',a(il)
endif
End barrier
if (option.eq.1.) then
neqq=neq
neqpl=neq+]
i f (me.eq.1) ts1=second ()
t1 (me) =second ()
Forcecall row9(a(nl),a(n2),naxa,irowl,icolh,neqq,neqpl,nterms,
£1,iopf (me),11)
write(6,%) ' factorization ends....
t2 (me) =second ()
write(16,%) ' Factorization time of proc.',me,'is',t2(me)-t1 (me)
Forcecall row9(a(nl),a(n2),naxa,irowl,icolh,neqq,neqpl,nterms,
§2,iops(me),11)
t2 (me) =second ()
write(16,%) ' Eqn solver time of proc.',me,'is',t2(me)-t1 (me)
i f (me.eq.1) then
ts2=second ()
tst=ts2-tsl
write(16,%)' cpu time for the eqn solver:',tst
endif
else
Barrier
CALL SESOL (A(N]),A(N3).A(Nh),NEQ,MBAND,LL,NBLOCK.NEQB,NSB,HI.

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

1 k,3,2,7)
End barrier
endif
Chekk CALL TTIME (TT (2))
if(me.eq.1) tt (2)=second ()

o

PRINT DISPLACEMENTS

Barrier
N2=NT1+NUMNP*6
N3=N2+6%LL
if (option.eq.1.) then
nblock=1

negb=neq
Endif
CALL PRINTD (A(N1),A(N2),A(N3),NEQB,NUMNP,LL,NBLOCK,NEQ,2,1)
Coeke CALL TTIME(TT(3))
tt{3)=second ()

C
o COMPUTE AND PRINT ELEMENT STRESSES
o

N2=NT1+4x|L

N3=N2+NEQB*LL

LB= (MTOT-N3) / (NEQ +12)
CALL STRESS(A(N1),A(N2),A(N3),NEQB,LB,LL,NEQ,NBLOCK)
Coesex CALL TTIME(TT(4))
tt (&) =second ()

C
C COMPUTE TIME LOG FOR THE STATIC SOLUTION PHASE
C
DO 50 K=1,3
50 TT(K) = TT(K+1)-TT(K)
WRITE (6,2000) (TT(L),L=1,3)
C
2000 FORMAT (//// 4BH S TAT I C SOLUT I ON TI ME L 0 G,
1 //5X,21HEQUATION SOLUTION =, F8.2 /
2 5X,21HDISPLACEMENT OUTPUT =, 8.2 /
3 5X,21HSTRESS RECOVERY =, F8.2 /)
C
¢ . write(6,%)' sub soleq ends'
End barrier
RETURN
END

FhdedokkdkhRhkhhRrhkhhkhkhhhkkhkikhihthdhkihhikidhhhhhkihkikihhkiik

SUBROUTINE STRESS (STR,B,D,NEQB,LB,LL,NEQ,NBLOCK)
IMPLICIT REAL%8 (A-H,0-2)

CALLS? ELTYPE
CALLED BY? SOLEQ

OO0 0

DIMENSION D(NEQ,LB) ,B(NEQB,LL) ,STR(4,LL)

COMMON /ELPAR/ NPAR(14) ,NUMNP,MBAND,NELTYP,N1,N2,N3,N4,N5,MTOT,MEQ
COMMON /JUNK/ LT,LH,IFILL (428)

COMMON /EXTRA/ MODEX,NT8,N10SV,NT10,IFILL2(12)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

c write(b6,%)' sub stress begins '

READ (8) STR
NT=(LL-1) /LB +1
LH=0
Ck%% STRESS PORTHOLE
IF (NTOSV.EQ.)
*WRITE (NT10) NELTYP,NT

c
DO 1000 II=1,NT
c
LT =LH+1
LLT=1-LT
LH=LT+LB-1
IF(LH.GT.LL) LH=LL
c
C MOVE DISPLACEMENTS INTO CORE FOR LB LOAD CONDITIONS
C

REWIND 2
Cx#*% STRESS PORTHOLE
IF(NTOSV.EQ. 1)
*WRITE (NT10) LT,LH
NQ=NEQB*NBLOCK
DO 200 NN=1,NBLOCK
READ (2) B
N=NEQB
IF (NN.EQ.1) N=NEQ-NQ+NEQB
NQ=NQ-NEQB
D0 200 J=1,N
| =NQ+J
DO 200 L=LT,LH
K=L+LLT
200 D (I,K)=B(J,L)
LK=LH-LT+1

(@}

CALCULATE STRESSES FOR ALL ELEMENTS FOR LB LOAD CONDITIONS

(@]

REWIND 1

DO 1000 M=1,NELTYP
READ (1) NPAR i

C#x%x% STRESS PORTHOLE

IF(N1OSV.EQ.1)
*WRITE (NT10) NPAR
MTYPE=NPAR (1)

NPAR (1) =0

CALL ELTYPE (MTYPE)

1000 CONTINUE

(o

c write(6,%)' sub stress ends'
RETURN
END

Jededededede ok e de e do g e e de s ok dede ok gk ek e de ek e e ke ded e b e dek e ook e d ke ok
SUBROUTINE STRSC(STR,D,NEQ,NTAG)
c IMPLICIT REAL*8 (A-H,0-2)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

c CALLED BY? TRUSS,BEAM,PLANE,THREED,SHELL,BOUND,P|PE

DIMENSION STR(4,1),D(NEQ,1)
COMMON /JUNK/ LT,LH,L,IPAD,SG (20),516G(7),EXTRA(186)
COMMON /EM/ NS,ND,B (42,63),TI (k2,4) ,LM(63)

c write(6,%)' sub strsc bigins'
IF (NTAG.EQ.0) GO TO 800
LL=L-LT+1
DO 300 I=1,NS
SG(1)=0.0
DO 300 J=1,4
300 SG(1)=SG(1)+Tt {i,d) *STR(J,L)
D0 500 J=1,ND
JI=LM(J)
I'F(JJ.EQ.0) GO TO 500
DO 400 1=1,NS
LOO SG{1)=SG(I1)+B(1,J)*D (JJ,LL)
C
500 CONTINUE
GO TO 900
800 READ (1) ND,NS, (LM(1),i=1,ND), ((B(1,J),1=1,NS),d=1,ND),
T ((T1(1,d),1=1,NS),J=1,L)
900 RETURN
END
Fedededededededkdled skt de ek ek e e de s e de e ke ek de kR e ok sk ke kv e ok e de sk s desk de ek ke ke ek k k

SUBROUTINE TRUSS

IMPLICIT REAL*8 (A-H,0-Z)
CALLS? RUSS,STRSC
CALLED BY? ELTYPE

OO0 0

COMMON /one/A (1)
COMMON /ELPAR/ NPAR (14) ,NUMNP,MBAND,NELTYP,N1,N2,N3,N4,N5,MTOT,NEQ
COMMON /JUNK/ LT,LH,L,I1PAD,SIG(20),N6,N7,N8,N9,N1O,IFILL (381)
COMMON /EXTRA/ MODEX,NT8,N10SV,NT10, IFILL2(12)
c common /maybe/ dxx (50),dyy (50) ,dzz (50) ,ee (50) ,aa (50)
common /say/ neqq,numee, loopur,nnblock,nterms,option
common /what/ naxa{10000),irowl (10000), icolh{10000)

c write(6,%) ' sub truss begins'
IF (NPAR (1) .EQ.0) GO TO 500
N6=N5+NUMNP
N7 =N6+NPAR (3)

N8 =N7+NPAR (3)

N9 =N8+NPAR (3)
N10=N9+NPAR (3)
MM=N10+NPAR (3) -MTOT

IF (MM.GT.0) CALL ERROR (MM)

CALL RUSS(A(N1),A(N2) ,A(N3),A(NL),A(N5),A(N6) ,A(N7),A(N8B),A(N9),
] A (N10) ,NUMNP)

RETURN

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

500 WRITE (6,2002)

NUME=NPAR (2)

DO 800 MM=1,NUME

CALL STRSC (A(N1),A(N3),NEQ,O0)

WRITE (6,2001)

00 800 L=LT,LH

CALL STRSC (A(N1),A(N3),NEQ,1)

WRITE (6,3002) MM,L,SIG(1),S1G(2)

Cxk% STRESS PORTHOLE

IF(N1OSV.EQ.1)

*WRITE (NT10) MM,L,SIG(1),SIG(2)
800 CONTINUE
RETURN
o
2001 FORMAT (/)
2002 FORMAT (//23H1 TRUSS MEMBER ACTIONS //
. L6HO MEMBER LOAD STRESS FORCE)
3002 FORMAT (218,F15.5,F15.3)

END
*)’n‘ck***:’c**a‘n‘:********a‘cfc*********a‘ta‘:*:‘:***********:‘m***m‘n‘t*********:‘n‘t**fc*k**
subroutine printd (id.d,b,neqb,numnp,ll,nb]ock.neq,nt,mq)

implicit real#8(a-h,o-2)

called by: soleqg,soleig,respec

0O 000

dimension id{(numnp,6),b(negb,11),d(6,11)
data q11,921,912,422,913,923/' load',' case','eigen-','vector',
13 ' mode ', 'number'/

c write(b,%)' sub printd begind'
rewind 8
read (8) id
m=neq
nn=neqgb#*nblock

if (mqg.eq.2) go to 50
if(mg.eq.3) go to 55
rewind nt
ql=ql]
g2=q21
go to 60
50 ql=ql2
q2=q22
go to 60
55 qi=ql3
q2=q23
rewind nt
read (nt)
60 write(6,2003) ql,q2
n=numnp

do 500 kk=1,numnp

i=6
do 250 ii=1,6

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

do 100 1=1,11

100 d(i,1)=0.
if(m.gt.nn) go to 150
if(m.eq.0) go to 150
read(nt) b
nn=nn-negb

150 if(id{n,i).1t.1) go to 250
k=m-nn
m=m-1

do 200 1=1,11
200 d(i,1)=b(k,1)
250 i=i-]

write(6,2004)n, (1, (d(i,1),i=1,6),1=1,11)

500 n=n-]
¢
c write(6,%)' sub printd ends'
return
c
2003 format(1h1,' nod e displacements',/,
3 ‘rotations',// 3x,khnode,2x,ab,2 (12x,2hx-, 12x,

& 2hy-,12x,2hz-) ,/7h number ,2x,ab,3(3x,1lhtranslation),
& 3(éx,8hrotation), /1ix)
2004 format {1nh0,i6,i8,6elk.5 /(7x,i8,6el1k4.5))

end

subroutine xload(neq,11,b)

c implicit real#*8(a-h,o-2)
dimension b(neq,11)
rewind 3
read (3) b
c write(6,%) ' xload neq 11',neq, 11
do 1 i=1,neq
c bb(i)=b(i,11)
< write(6,%) b(i,1),'bb(i) xload'
1 continue
return

end
c .
Cdedededededede ook dedodkde ok de o e ok ok e s ek o ok ko ok S o ks o o ko e ke sk g o ok e e ok ke ek o ok e o
Forcesub ROWS(A,B,MAXA,IROWL,|COLH,NEQ,NEQP],NTERMS,IFLAG
+ ,jops,lc) of NNP ident ME

REAL A (NTERMS),B(NEQ,Ic)

INTEGER MAXA (NEQP1), IROWL (NEQ), | COLH (NEQ)

INTEGER jops

Private INTEGER I|,J,K,L,IMI1,IC1,IBOT,!COL,!COLP, ITOP,JROW,KM]

Private INTEGER JM1,JM2,JM3, ML, JM5, JM6,IMT, M8, jm9,1DIV, IDIVI]

Private INTEGER JTOP,JBOT, ICOPY,jjl ,jjrow

Private REAL XMULTI1,XMULT2,XMULT3,XMULTL, XMULT5S, XMULT6, XMULT7,
+ XMULT8, TEMP, XINV, SUM

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

Async REAL X (10001)
End Declarations

c write(6,%)' row9 starts +HH+!

c Barrier

c if (me.eq.3) then

c do 198 il=1,nterms

c198 write(6,%)' a vector at the beginning of rowg',a(il)
c write (6,%) 'b,maxa,irwl,icolh’

c do 199 ili=1,neq

c199 write(G,*)b(il.l),maxa(il),irowl(il),icolh(in

c End barrier

c endif

C R R B R

IF(IFLAG.EQ.1) THEN

Presched DO 9 | = 1, NEQ
Void X(I)
9 End Presched Do
c write(*,%) 'void has been completed'
jops = 0
Barrier
jops = 0
A(1) = SQRT(A(1))
XINV = 1.0/A(1)
CDIRS |VDEP

DO 20 K = 1, IROWL(1)
A(K+1) = XINV % A(K+1)
20 CONTINUE

¢ write(%,%) 'first row has been processed’
jops = jops + irowl (1)+2
Produce X (1)=a(l)

c write (%,%) 'first void has been unvoided'

End Barrier

Covvn. DECOMPOSED STIFFNESS MATRIX PHASE
Presched DO 100 | = 2, NEQ
c TAKES CARE OF ROWS ONE BY ONE

iml = maxa (i)
icl = icolh(i) .

c indices calculation for using the modification factor
c from the upper segment of column-height.

ibot = i - 9%((i-1)/9)

icol = icl - ibot + 1

icolp= icol/9

itop = icol - 9%icolp
cindices calculation for modifcation by itop elements.
jrow = i = icl
jml = maxa(jrow) + icl
jjrow=irowl (jrow)
c write (%,%) 'im],ic\,ibot,icol,icolp.itop,jrow,jml'

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

c write (%, %) iml,icl,ibot,icol,icolp,itop,jrow,jml
IF (ITOP. GE. 1) THEN

ICOPY = JROW + ITOP -1

c If (Isfull(x(icopy))) go to 331
Copy X (ICOPY) INTO TEMP
c write(%,%) 'the statement icop=',icop,'has been checked'’
ENDIF
331 go to (101,102,103,104,105,106,107,108), itop
Covnenn et ettt e et ettt s et et eseanaan feeriseceans et et erer e
go to 150
CDIRS IVDEP
101 do 111 k = 1, jjrow=icl+l
kml = k -1

a(imi+kml) = a(iml+kml) -a(jml1)*a (jmi+km1)
111 continue

go to 150
102 jm2 = jml + jjrow
CDIRS |IVDEP
do 112 k = 1, jjrow-icl+]
kml = k -1
a(iml+kml) = a(imi+kml) -a(jml1)*a(jml+km})
+ - a(jm2) *a (jm2+km1)
112 continue
go to 150
103 jm2 jml + jjrow

im3 jm2 + jjrow -1
CDIRS (VDEP

do 113 k =1, jjrow -icl+]
kml = k -1
a(iml+kml) = a(iml+kml) - a(jml) *a (jml+km1)

+ -a(jm2) *a (jm2+km1) -a (jm3) *a (jm3+km1)
113 continue
go to 150
104 Jjm2 = jml + jjrow

im3 = jm2 + jjrow -1
jmb = jm3 + jjrow -2

CDIRS IVDEP
do 114 k = 1, jjrow -icl+]
kml = k -1
a(iml+kml) = a(iml+kml) - a(jml1)*a (jmi+kml)
+ -a(jm2) *a (jm2+km1) -a(jm3) *a (jm3+km1)
+ -a (jmk) *a (jml+km1)
1L continue
go to 150
105 jm2 = iml + jjrow

jm3 = jm2 + jjrow -1

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

jmb = jm3 + jjrow -2
jm5 = jmk + jjrow -3

CDIRS IVDEP
do 115 k = 1, jjrow -icl+]
kml = k -1
a(imi+kml) = a(imi+kml) - a(jmi)%a(jmi+kml)
+ -a(jm2) *a (jm2+km1) -a(jm3) *a (jm3+km1)
+ -a (jmb) *a (jmb+km1) -a (jm5) *a (jm5+km1)
115 continue
go to 150
106 jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmb = jm3 + jjrow -2
jm5 = jmbk + jjrow -3
jmé = jm5 + jjrow -4
CDIRS IVDEP
do 116 k = 1, jjrow -icl+]l
kmi= k =1
a(iml+km1) = a(iml+km1) =a(jml)*a (jml+kml)
+ -a (jm2) *a (jm2+km1) -a(jm3) *a (jm3+km1)
+ -a (jmb) *a (jmb+km1) -a(jm5) *a (jm5+km1)
+ -a (jmé) *a (jm6+km1)
116 continue
go to 150
107 jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmb = jm3 + jjrow -2
jm5 = jmbk + jjrow -3
jmé = jm5 + jjrow -4
jm7 = jmé + jjrow -5
CDIRS IVDEP
do 117 k =1, jjrow -icl+l]
kml = k =1
a(iml+km1) = a(imi+kml) -a(jm1) *a (jmi+km1)
+ -a (jm2) *a (jm2+km1) -a(jm3) *a (jm3+km1)
+ -a (jmb) *a (jmb+km1) -a(jm5) *a (jm5+km1)
+ -a (jmé) *a (jmé+km1) -a(jm7) *a (jm7+km1)
117 continue ’
go to 150
108 jm2 = jml + jjrow

jm3 = jm2 + jjrow -1

jmhk = jm3 + jjrow -2

jm5 = jmk + jjrow -3

jmé = jm5 + jjrow -4

jm7 = jmé + jirow -5

jm8 = jm7 + jjrow -6

CDIRS IVDEP

do 118 k = 1, jjrow -icl+]
kml = k =1
a(iml+kml) = a(imi+kml) =-a(jm1)*a (jmi+km1)

+ -a(jm2) *a (jm2+km1) =-a(jm3)*a (jm3+km1)

+

-a (jmb) *a (jmb+km1) -a (jm5) *a (jm5+km1)
+ -a (jmé) *a (jm6+km1) -a (jm7) *a (jm7+km1)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

+ -a (jm8) *a (jm8+km1)
118 continue
go to 150
ettt i i ittt et etanouoosenennanoooosoesssenosonneannooennnenns
150 jops = jops + itop*(jjrow -icl+2) %2
11T = 3
idiv = 1
if (icolp.le.l11) then
11 =icolp
idivli=]
- else
idivi=icolp-1i+1
endif
jtop = icl
jbot = icl-itop+l
c write(%,%) '11,idiv,idiv],jtop,jbot’
¢ write(%,%) 11,idiv,idivl,jtop, jbot
do 101 =1, 11

jtop = jtop - itop
jbot = jbot - g#%idiv]
itop = 9*idiv]

idivl = idiv

if (1.eq.11) then

icopy = i - 1

else

icopy = i -jbot +ibot-}

endif
c write(%,%) 'jtop,jbot,itop,idiv]',jtop,jbot,itop,idivl,icop
c If (Isfull(x(icopy))) go to 332
Copy X (icopy) into temp
c write(%,%) 'icop has been cleared'
332 do 200 j = jtop, jbot, -9
JJ1 = |-J

jjrow = irowl (jj1)
Jm! = maxa (jjl1) + j

jm2 = jml + jjrow

jm3 = jm2 + jjrow -1
jmb = jm3 + jjrow -2
jm5 = jmb + jjrow -3
jm6 = jm5 + jjrow -4
jm7 = jmé + jjrow -5
jm8 = jm7 + jjrow -6

im9 = jm8 + jjrow -7

c xmuttl = a(jml)
c XMULT2 = A(JM2)
c XMULT3 = A (JM3)
¢ XMULTL = A (JMh)
c xmults = a(jms)
¢ xmulté = a(jmé)
¢ xmult? = a(jm7)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

a(jm8)
a(jm9)

c xmuit8
xmultS

c
CDIRS IVDEP
DO 300 K = 1, jjrow =J +1

KMl = K -1

A(imi+km1) = A(iml+km]l)
-a(jm1) *a (jmi+km1) -a(jm2) *a (jm2+kml)
-a (jm3) *a (jm3+km1) -a (jmbk) *a (jmb+km1)
-a (jm5) *a (jm5+km1) -a (jm6) *a (jmb+km1)
-a(jm7) *a (jm7+km1) -a(jm8) *a (jm8+km1)
. -a (jm9) *a (jm9+km1)
300 CONTINUE

jops = jops + 18%(jjrow -j+1)
200 CONTINUE
10 continue
11=i-1
¢ If (Isfull(x(11))) go to 333
Copy x(11) into temp
¢ write(*,%) '11 has been cleared',1]
333 go to (20],202,203,20&,205.206,207,208) ibot-1
go to 250
D R
201 jjrow = irowl (i-1)

jml = maxa(i-1) +1
CDIRS |VDEP
DO 211 K =1, jjrow
KMl = K -1
A(IMI4+KM1) = A(IMI+KMT) - a(jml) % A (JM1 +KM1)
211 CONTINUE
go to 250

202 jjrow = irowl (i-2)
jml = maxa(i-2) +2
JM2 = jml + jjrow

CDIRS |VDEP
DO 212 K = 1, jjrow -1
KMl = K -]
A(IMI+KMT) = A (IM1+KM1) - a(jml1) *a (jmi+km1)
. -A (jm2) *A (JM2+KM1)
212 CONTINUE
go to 250
203 jjrow = irowl (i-3)
jml = maxa(i-3) + 3
JM2 = jml + jjrow
JM3 = jm2 + jjrow -1
CDIRS IVDEP

DO 213 K =1, jjrow -2
KMi=K -1
A(IMI+KMI) = A(I1MI1+KM1) =A(Gm1) *A (JM1+KM1)
-a(jm2)*A(JM2+KMl)-a(jm3)*A(JM3+KMl)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

213 CONTINUE
go to 250

204 jjrow = irowl (i-4)
Jjml = maxa(i-4) + 4
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmk = jm3 + jjrow -2

CDIRS IVDEP
do 214 k = 1,jjrow -3

kml = k -1

a(imi+kml) = a(imi+kml) -a(jml) *a (jmi+km1)
-a (jm2) *a (jm2+km1) -a {(jm3) *a (jm3+km1)
. -a (jmb) *a (jmb+km1)
214 continue

go to 250

205 jjrow = irowl (i-5)
jml maxa(i-5) + §
im2 jml + jjrow
jm3 = jm2 + jjrow -1
jmb = jm3 + jjrow -2
jm5 = jmk + jjrow -3

CDIRS IVDEP
do 215 k = 1, jjrow -4

kml = k -1

a(iml+km1)

a(iml+km1) =-a(jml) *a (jmi+km1)

-a(jm2) *%a (jm2+km1) -a (jm3) *a (jm3+km1)

. -a (jmb) *a (jmb+km1) -a (jm5) *A (jm5+km1)

215 continue
go to 250

206 jjrow = irowl (i-6)
jml = maxa(i-6) +6
jm2 = jml + jjrow
im3 jm2 + jjrow -1
jmb = jm3 + jjrow -2
Jms = jmb + jjrow -3
jmé = jm5 + jjrow -4

CDIRS |VDEP
do 216 k = 1, jjrow -5

kml = k -1

a(imi+kml) = a(imi+kml1) -a(jml)*a (jml+km1)
-a(jm2) *a (jm2+km1) -a (jm3) *a (jm3+km1)
-a (jmb) *a (jmb+km1) -a (jm5) *a (jm5+km1)
. -a(jmé) *a (jmb+km1)
216 continue

go to 250

207 jjrow = irowl (i-7)
jml = maxa (i-7)+7
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmh = jm3 + jjrow -2
jm5 = jmbh + jjrow -3

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

jmé = jm5 + jjrow -b
jm7 = jmé + jjrow -5
CDIRS IVDEP
do 217 k =1, jjrow -6
kml = k -1
a(iml+kml) = a(iml+kml) —a(jm1) *a(jml+km1)
-a (jm2) *a (jm2+km1) =a (jm3) *a (jm3+km1)
-a (jmb) *a (jmb+km1) -a (jm5) *a (jm5+km1)
. -a (jm6) *a (jmé+km1) -a (jm7) *a (jm7+km1)
217 continue
go to 250
208 jjrow =irowl (i-8)
jml = maxa(i-8) + 8
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jmb = jm3 + jjrow -2
jm5 = jmbk + jjrow -3
jmé = jm5 + jjrow -b
jm7 = jmé + jjrow -5
jm8 = jm7 + jjrow -6
CDIRS {VDEP
do 218 k = 1, jjrow -7
kml = k -1
a(iml+km1) = a(iml+km1) - a(jml)*a (jmi+km1)
-a (jm2) *a (jm2+km1) -a (jm3) %a (jm3+km1)
-a (jmb) *a (jmb+km1) -a (jm5) *a (jm5+km1)
-a (jm6) *a (jmé+km1) -a (jm7) *a (jm7+km1)
. -a (jm8) *a (jmB+km1)
218 continue
go to 250
C v i v eeonenaasnonsesseonssssssassosnsnasosssonosssssaossssseosssanssesve
250 jops = jops + 2% (ibot-1)*(jjrow -ibot +2)
A(1M1) =SQRT (A (IM1))
c WRITE (6,%) 'A(', 1M1, =',A(IM1)
XINV = Y.O/A(IM])
CDIRS IVDEP
DO 260 K = 1, IROWL(I)
A(IMI+K) = XINV *A (1 M1+K)
260 CONTINUE

jops = jops + irowl (i) +2
Produce X (1) = A(IM1)
c write(*,%) 'row',i,'is cleared'
c WRITE (6, %) (A(IM1+L),L=I,|ROWL(I))
100 End Presched Do
ELSE
Covenn FORWARD REDUCTION

do 196 lo=1,lc¢

Barrier
jops = 0

DO 510 | = 1,NEQ
B(l,10) = B(l,10) /A (MAXA (1))
SUM = B(l,10)

FILE:

CDIRS

520

510

C....

PSAP FRC A OLD DOMINION UNIVERSITY

IM1 =MAXA (1)
IVDEP
DO 520 J = I+1, I+[IROWL (1)
B(J,l0) = B(J,10) - SUM* A(IMI1+J-1)
CONTINUE
jops = jops + 2% (irowl (i))+ 2
CONTINUE

.+..BACK SUBSTITUTION

B(NEQ,10) = B(NEQ, o) /A (MAXA (NEQ))
jops = jops +I
DO 1010 | = NEQ-1,1,-1

SUM = 0.0

CDIRS IVDEP

1020

196

C
clag

D0 1020 J ={+1, |ROWL(I)+I
SUM=SUM+ A (MAXA (1)+J-1)*B (J,10)

CONTINUE

B(l,10) =(B(l,10)-SUM) /A (MAXA (1))

jops = jops + 2% (irowl (i)) +2
1010

CONTINUE
End Barrier
continue
ENDIF
do 129 ii=1,neq
write(6,%)b(ii,1)
Barrier
rewind 2
write{2) ((b(i,l0),i=1,neq),lo=1,lc)
write(6,%)' sub row9 ends....++++++'
End barrier
RETURN
END
subroutine column
common /say/ neqq,numee, lcopur,nnblock,nterms,option
common /what/ naxa (10000),irow! (10000),icolh (10000)

[=lalalalalalintaigisinlalninlnlalalalslnlalalalntalalslalalalaly]

c
c

U~

specify the level of loop unrolling

modify the row length for loop unrol purpose
nnblock=neq/loopur

write(6,%) ' nnblock..neq, loopur',nnblock,neq, loopur
lef tov=neq- (nnblock*1oopur)

maxcol=0

do 5 i=1,nnblock

istart=(i-1) *loopur+]
iend=i*loopur

do 6 jrow=istart,iend
jcol=jrowtirow! (jrow) -1
if(jcol.gt.maxcol)maxcol=jcol
continue

now increase each row length for loopur purpose
do 7 jrow=istart,iend

irowl (jrow)=maxcol-jrowtl

continue

now take care of the left over row
istart=nnblock*loopur+]

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

i end=neq
do 8 jrow=istart,iend
8 irowl (jrow)=neq-jrowt]
c88 column height
c to find the column height
en icolh(neq) =0
cn do 91 i=neq-1,1,-1
cn irl=irowl (i)
cn do 92 j=i,i+irl-1
cn92 icoth(j)=j-i
cngi continue
e e ded oo de ek e Kook de ke de e dedode e e e de ek
c find the location of the diagonal terms
naxa{1) =1
do 11 i=2,neq
11 naxa (i)=naxa (i-1)+irowl! (i-1)
c find the total number of terms

nterms=naxa (neq)
cnNNhNNNNARRNNANNNRNANNANNNRNNRNRRNNNN
c to find the column height
icolh(neg) =0
do 91 i=neqgq-1,1,-1
irl=irowl (i)
do 92 j=i,i+irl-1

92 icolh(j)=]j-i
91 continue
¢ update row length not to include the diagonals
c do 17 i=1,neq
cl1? irow!l (i)=irow! (i) ~1
c
return
end

chkkdkF Rk Rk kk beam subroutines
SUBROUTINE BEAM

CALLS? TEAM,STRSC
CALLED BY? ELTYPE

OO0

COMMON /ELPAR/ NPAR (14) ,NUMNP,MBAND,NELTYP,N1,N2,N3,N4,N5,MTOT,NEQ
COMMON /JUNK/ LT,LH,L.IPAD,SIG(ZO),N6,N7,N8,N9,N10,IFILL(381)
COMMON /EXTRA/ MODEX,NT8,N10SV,NTI10, IFILL2(12)

Chkk COMMON A (1)
COMMON /one/A (1)
common /say/ neqq,numee,Ioopur.nnblock,nterms.option
common /what/ naxa (10000) ,irow! (10000),icolh (10000)

c COMMON A (7100)

IF (NPAR (1) .EQ.0) GO TO 500
N5A=N5+NUMNP

N6=N5+NPAR (5) + NUMNP
N7=N6+NPAR (5)
N8=N7+NPAR (5)
N9=N8+12%NPAR (k)
N10=N9+6%NPAR (3)

F

o

OO0

ILE:

fedek

800

2001
2002

3002

2000

PSAP FRC A OLD DOMINION UNIVERSITY

N11=N10+NPAR (5)
IF(N11.GT.MTOT) CALL ERROR(N11-MTOT)

CALL TEAM(NPAR (2) ,NPAR (3) ,NPAR (4) ,NPAR(5) ,A(N1) ,A (N2),A(N3),
1 A(Nh),A(NSA).A(N6).A(N7).A(N8),A(NS),A(NIO),
2 NUMNP , MBAND)

RETURN

WRITE (6,2002)
NUME=NPAR (2)
numee=nume
neqg=neq
DO 800 MM=1,NUME
CALL STRSC (A(N1),A(N3),NEQ,O)
WRITE (6,2001)
D0 800 L=LT,LH
CALL STRSC (A(N1),A(N3),NEQ,1)
WRITE (6,3002) MM,L, (SIG(I1),I=1,12)
STRESS PORTHOLE
[F(NTOSV.EQ.1)

*WRITE (NT10) MM, L, (SIG(1),I=1,12)

CONT I NUE

RETURN

FORMAT (/)

FORMAT (/28H1..... BEAM FORCES AND MOMENTS//

T0HOBEAM LOAD 5X 5HAXIAL 2 (7X,5HSHEAR) ,5X 7HTORSION
2(5X,7HBENDING) / 10H NO. NO. 8X 2HR! 10X 2HR2 10X
2HR3 10X 2HM1 10X 2HM2 10X 2HM3)

FORMAT (I15,14,1PE11.3,5E612.3/8X,6E12.3/)

END

SUBROUTINE ERROR (N)

WRITE (6,2000) N

FORMAT (// 20H STORAGE EXCEEDED BY 16)

STOP

END

SUBROUTINE NEWBM(E,G,RO,WGHT,COPROP,SFT,NUMF | X, NUMETP)

CALLED BY? TEAM

FORM NEW BEAM STIFFNESS

DIMENSION E(1),G(1),RO(1),COPROP (NUMETP, 1) ,SFT (NUMF IX, 1) ,WGHT (1)

COMMON/EM/LM (24) ,ND,NS,ASA (2L, 24) ,RF (24,4) , XM (24) ,SA (12,24),
1 SF(12,4) ,XWT'(24) , IFILL (3000)

COMMON /NEWB/ LC(4),T(3,3),JK(6) ,MELTYP,MATTYP,DL

DIMENSION R(12),5(12,12),Cc(12)

DO 5 I=1,12
DO 5 J=1,12
S(!,J)=0.0D0
AX=COPROP (MELTYP, 1)
AY=COPROP (MELTYP, 2)
AZ=COPROP (MELTYP, 3)
AAX=COPROP (MELTYP, &)

FILE:

o0

O

O

70

71
72
73

102

104

106

PSAP FRC A OLD DOMINION UNIVERSITY

AAY=COPROP (MELTYP,5)

AAZ=COPROP (MELTYP, 6)

SHFY=0.0

SHFZ=0.0

ZY=E (MATTYP) / (DL*DL)

ElY=ZY*AAY

ElZ=ZY*AAZ

IF (AY.NE.0.0) SHFY=6.%E1Z/ (G (MATTYP) %AY)
IF(AZ.NE.O.0) SHFZ=6.%E1Y/ (G (MATTYP) *AZ)
COMMY=E1Y/ (1.+2.%SHFZ)

COMMZ=E1Z/ (1.+2.%SHFY)

FIXED END FORCES IN LOCAL COORDS

DO 73 N=1,4

M=LC (N)

I[F (M.GT.0) GO TO 71
DO 70 I=1,12
SF(I1,N)=0.

GO TO 73

D0 72 I=1,12

SF (1,N)=SFT (M, 1)
CONTINUE

FORM ELEMENT STIFFNESS IN LOCAL COORDINATES

S(1,1)= E(MATTYP)* AX/DL

S (4,4)= G(MATTYP) *AAX/DL

S(2,2)= COMMZ*12./DL

S(3,3)= COMMY%12./DL

S(5,5)= COMMY* L.%DL% (1.4+0.5%SHFZ)
S(6,6)= COMMZ® L.xDL% (1.+0.5%SHFY)

S(2,6)= COMMZ* 6.
$(3,5) =—COMMY* 6.

DO 102 I=1,6
J=1+6
S(J,d)=s(,1)
DO 104 =1,k
J=1+6

S{1,Jd)==5(1,1)

S(6,12)= S(6,6) % (1.-SHFY) / (2.+SHFY)
S(5,11)= S(5,5) % (1.-SHFZ) / (2.+SHFZ)
$(2,12)= S(2,6)

S(6, 8)=-5(2,6)

$(8,12)=-5(2,6)

S(3,11)= S(3,5)

S(St 9)) (3:5)

$(9,11)=-5(3,5)

DO 106 1=2,12

K=l-1

D0 106 J=1,K

S(1,d)=S(J, 1)

MODIFY ELEMENT STIFFNESS AND ELEMENT FIXED END FORCES FOR KNOWN

ZERO MEMBER END FORCES.

FILE:

125

130

135
136
140
145

OO 00

31

151
150

O

32

PSAP FRC A OLD DOMINION UNIVERSITY

IF ((JK{1)+JK(2)) .EQ.0) GO TO 145
DO 140 K=1,2

KK=JK (K)

KD=100000

[1=6% (K-1)+1

12=1 145

DO 140 I=11,12

IF (KK.LT.KD) GO TO 140
S1i=S(I,I)

DO 125 N=1,12
R(N)=S(I,N)

DO 130 M=1,12
C(M)=S (M, 1) /511

DO 130 N=1,12

S (M,N) =S (M,N) -C (M) *R (N)
DO 135 N=1,4

SFi=SF (I,N)

DO 135 M=1,12

SF (M,N) =SF (M,N) =C (M) *SF I
KK=KK-KD

KD=KD/10

CONT INUE

OBTAIN SA(12,12) RELATING ELEMENT END FORCES
JOINT DISPLACEMENTS (GLOBAL).

Do 31 I=1,12

DO 31 J=1,24
SA(1,J)=0.0D0

DO 150 LA=1,10,3
LB=LA+2

DO 150 MA=1,10,3
MB=MA-1

DO 150 I=LA,LB
D0 150 JM=1,3
J=JM+MB

XX=0.

DO 151 K=1,3
XX=XX+S (1, K+MB) *T (K, JM)
SA(I,J)=XX

ELEM STIFF ASA(12,12) AND FIXED END FORCES RF

DO 32 I=1,24

DO 32 J=1,24

ASA (1,J)=0.0D0
DO 160 LA=1,10,3
LB=LA-]

DO 160 MA=1,10,3
MB=MA+2

DO 160 IL=1,3
I=1L+LB

DO 160 J=MA,MB
XX=0,

(LOCAL) AND

(12) IN GLOBAL COORDS

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

DO 161 K=1,3
161 XX=XX+T (K, IL) *SA (K+LB,J)
160 ASA(1,J)=XX

DO 165 LA=1,10,3

LB=LA-1

D0 165 IL=1,3

i=IL+LB

DO 165 N=1,4

Xx=0,

D0 162 K=1,3
162 XX=XX-T (K, IL) *SF (K+LB,N)
165 RF (1,N)=XxX

OO0

FORM MASS AND GRAVITY LOAD MATRIX

XXM=RO (MATTYP) *AX*DL/2.
WTM=WGHT (MATTYP) XAX*DL/2.
DO 180 M=1,3
XWT (M) =WTHM
XWT (M+3) =0.
XWT (M+9) =0.
XWT (M+6) =WTM
XM (M) =XXM
XM (M+3) =0.
XM (M+9) =0.
180 XM (M+6) =XXM
RETURN
END
SUBROUTINE SLAVE (X,Y,Z,!|D,NUMNP,NI,NJ)

CALLED BY? TEAM

PERFORMS SLAVE...MASTER DISPLACEMENT TRANSFORMATION
(FOR NODES CONNECTED TO BEAM ELEMENTS ONLY)

OO0 00

DIMENSION X (1),Y(1),Z(1), 1D (NUMNP,1)
COMMON /EM/ LM(24) ,ND,NS,S (24,2L) ,R(96) ,XM(24) ,SA(12,24) ,TT(12,4)
1 , | FILL (3048)
COMMON /EXTRA/ MODEX,NT8
C DETERMINE REQUIRED TRANSLATION DEGREES OF FREEDOM

DO 54 NF=1,12,6

NOD=N|

IF (NF.EQ.7) NOD=NJ

DO 30 K=1,3

| =K+NF -1

IF (LM(1) .GE.O) GO TO 30
M=-LM (1)

LM(1)=1D (M,K)

35 D1== (Y (NOD) -Y (M))
D2= Z(NOD) -Z (M)
LM (ND+1) =1 D (M, 6)

LM (ND+2) =1D (M, 5)

FILE:

b5

55

50

60

70

80
30

(o}

54

DOOOOOO

PSAP FRC A OLD DOMINION UNIVERSITY

GO TO 50
Di=-(Z (NOD)-Z (M))

D2= X (NOD) -X (M)

LM(ND+1)=ID (M, 4)

LM (ND+2) =1D (M, 6)

GO TO 50

D1=- (X (NOD) -X (M))

D2= Y (NOD) -Y (M)

LM (ND+1) =1D (M, 5)

LM(ND+2)=ID (M, 4)

CONTINUE

IF (MODEX.EQ.1) GO TO 80
TRANSFORMATION...ARRAYS INCREASE IN SIZE

DO 60 11=1,ND
S(ND+1,11)=S (I, 11)*D]
S(ND+2,11)=S (I, 11)*D2

S(HI,ND+1) = S(11,1) *D1
S(I1,ND+2) = S(I11,1) *D2
CONT I NUE

XM(ND + 1) = XM(I)*D1%D]1
XM(ND + 2) = XM(1)*D2%D2

DO 70 11=1,NS
SA(LI,ND+1)=SA(I1,1)*D1
SA(11,ND+2)=SA(11,1)*D2

S(NO+1,ND+1) =S (I,1) %D 1#%*2
S (ND+2,ND+2) =S (I, 1) *D2%%2
S (ND+1,ND+2) =S (I,1) *D1%D2
S (ND+2,ND+1) =S (ND+1,ND+2)
ND = ND + 2

CONT INUE

SET ROTATIONS

DO 54 J=1,3

K=NF+J+2

IF (LM(K) .GE.O) GO TO 5k
M=-LM (K)

LM(K)=1D (M, J+3)

CONT I NUE

RETURN

END

SUBROUTINE TEAM (NBEAM,NUMETP,NUMF | X,NUMMAT, 1D,X,Y,Z,E,G,RO,
1 SFT,COPROP,WGHT,NUMNP,MBAND)

CALLS? NEWBM,SLAVE,CALBAN
CALLED BY? BEAM

FORMS 3-D BEAM STIFFNESS AND STRESS ARRAYS

COMMON/EM/LM (24) ,ND,NS,ASA (24, 2L) ,RF (24,4) , XM (24) ,SA(12,24),
1 SF{12,4) ,XWT (24) , IFILL (3000)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

COMMON /NEWB/ LC(4),T(3,3),JK(6) ,MELTYP,MATTYP,DL

COMMON /EXTRA/ MODEX,NT8,1FILL2(14)

DIMENSION X(l),Y(I),Z(l).ID(NUMNP,]),E(]),G(]),SFT(NUMFIX,I)
1 ,COPROP(NUMETP,I),RO(l),EMUL(3,b),WGHT(l)

DIMENSION ILC(h),TI(3,3),TJ(3.3).STIF(722).TS(2,2),LS(#)
common /say/ neqq,numee,loopur,nnblock,nterms,option

common /what/ naxa (10000) ,irowl (10000) , icolh (10000)
EQUIVALENCE (STIF(1),LM(1))

C
c
c INITIALIZATION
c
WRITE (6,2005) NBEAM,NUMETP,NUMF|X,NUMMAT
N=0
00 5 1=1,1058
5 STIF(1)=0.
o
C READ AND PRINT MATERIAL PROPERTY DATA
C

WRITE (6,2001)
DO 10 |=1,NUMMAT
READ (5,1001) N,E(N),G(N),RO(N),WGHT (N)
WRITE (6,2002) N,E(N),G(N),RO(N),WGHT (N)
10 G(N)=0.5%E (N) / (1.4G (N))
C##%x DATA PORTHOLE SAVE
IF (MODEX.EQ.1)
*WRITE (NT8) (E (N),G(N),RO(N) ,N=1,NUMMAT)

READ AND PRINT GEOMETRIC PROPERTIES OF COMMON ELEMENTS.

[}

WRITE (6,2003)

DO 30 [=1,NUMETP

READ (5,1002) N, (COPROP(N,J),J=1,6)
IF((COPROP(N,]).NE.0.0).AND.(COPROP(N,&).NE.0.0).AND.
] (COPROP(N,S).NE.0.0).AND.(COPROP(N,G).NE.0.0)) GO TO 20
WRITE (6,2013)

STOP .
20 WRITE (6,2004) N, (COPROP (N,J),J=1,6)
30 CONTINUE

C#%% DATA PORTHOLE SAVE
|F (WODEX.EQ.1) '
*WRITE (NT8) ((COPROP (N, J) ,J=1,6) ,N=1,NUMETP)

(@]

ELEMENT LOAD MULTIPLIERS

READ (5,1006) ((EMUL (1,J),J=1,4),1=1,3)
WRITE (6,2006) ((EMUL (1,J),J=1,4),1=1,3)
Ck%% DATA PORTHOLE SAVE
IF (MODEX.EQ.1)
*WRITE (NT8) ((EMUL (1,J),J=1,4),1=1,3)

(@]

c READ AND PRINT FIXED END FORCES IN LOCAL COORDINATES

IF (NUMFIX .EQ. O) GO TO 56
WRITE (6,2010)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

DO 55 I=1,NUMFIX
READ (5,1005) N, (SFT(N,J),J
55 WRITE (6,2011) N, (SFT(N,J),J
Cx%% DATA PORTHOLE SAVE
IF (MODEX.EQ.1)
*WRITE (NT8) ((SFT(N,J),J=1,12),N=1,NUMFIX)
56 CONTINUE

»12)
»12)

[}

READ AND PRINT ELEMENT DATA. GENERATE MISSING INPUT.

WRITE (6,4000)
L=0
60 KKK=0
READ (5,3000) INEL,INI,INJ, INK, |MAT, IMEL, ILC, INELKI, INELKJ, INC
IF (INEL.NE.1) GO TO 15
Ni=INI
NJ=INJ
NK=1NK
15 IF (INC.EQ.O0) INC=]
65 L=L+1
KKK=KKK+1
ML=INEL-L
IF (ML) 66,67,68
66 WRITE (6,4003) INEL
SToP
67 NEL=INEL
NI =|N|
NJ =|NJ
NK= | NK
MATTYP=|MAT
MELTYP=IMEL
DO 90 I=1,4
90 LC(1)y=iLC (1)
NLOAD=LC (1) +LC (2)+LC (3)+LC (L)
NEKODI=INELKI
NEKODJ=INELKJ
D0 91 I=1,3
91 T(2,1)=Ti(2,1)
GO TO 69
68 NEL=INEL-ML
NI =|N+KKK*|NCR
NJ =JN+KKK* | NCR
69 CONTINUE
WRITE (6,4001) NEL,NI,NJ,NK,MATTYP,MELTYP,LC,NEKODI,NEKODJ
Cx%k DATA PORTHOLE SAVE
IF (MODEX.EQ.1)
*WRITE (NT8) NEL,NI,NJ,NK,MATTYP,MELTYP,LC,NEKODI,NEKODJ

74 DX=X (NJ) =X (N1)
DY=Y (NJ) -Y (NI)
DZ=Z (NJ) -Z (NI)

DL=SQRT (DX*DX+DY*DY+DZ*DZ)
IF(DL) 75,75,76

75 WRITE (6,L005) NEL

STOP

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

o

FORM GLOBAL TO LOCAL COORDINATE TRANSFORMATION.

76 T(1,1)=DX/DL
T(1,2)=DY/DL
T(1,3)=DZ/DL

[}

COMPUTE DIRECTION COSINES OF LOCAL Y-AXIS

Al=X (NJ) =X (N1)
A2=Y (NJ) -Y (NI)
A3=Z (NJ) -Z(NI)
B1=X (NK) =X (N1) -
B2=Y (NK) =Y (N1)
B3=Z (NK) -Z (N1)
AA=AT*A1+A2%A2+A3*A3
AB=A1%B1+A2%B2+A3%B3
Ul=AA%*B1-ABXAl
U2=AA%*B2-AB*A2
U3=AA%B3-AB%A3
UU=UT1#U14+U2%U2+U3%*U3
UU=SQRT (UU)
IF (UU.GT.0.) GO TO LO
WRITE (6,4002) INEL
STOP

LO CONTINUE
|F (MODEX.EQ.1) GO TO 185
T(2,1)=U1/UU
T{2,2)=U2/0U
T(2,3)=U3/UU
T(3,1)=T(1,2)*T(2,3) -T(1,3)*7(2,2)
T(3.2)=T(1.3)*T(2.1)-T(1.1)*T(2,3)
T(3,3)=T(1,1)*T(2,2) -T(1,2)%T(2,1)

O o0

CHECK IF NEW STIFFNESS NEEDED

IF (NEL.GE.1) GO TO 80

\f (ABS (DS-DL) .GT. DL/100.) GO TO 80

IF ((MT.NE.MATTYP) .OR. (ME.NE.MELTYP)) GO TO 80

IF ((JK(1) .NE.NEKODI) .OR. (JK (2) .NE.NEKODJ)) GO TO 80

DO 81 I=1,4

If (LS (1) .NE.LC(!)) GO TO 80
81 CONTINUE

DO 82 I=1,2

D0 82 J=1,2

IF (ABS (TS (1,d)-T(1,J)) .GT. ABS(T(1,J)/100.)) GO TO 80
82 CONTINUE

GO TO 185

80 DS=DL
MT=MATTYP
ME=MELTYP
Do 77 1=1,2
D0 77 J=1,2

77 TS(1,d)=T(,J)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

DO 78 I=1,4
78 LS (I1)=LC (1)
JK (1) =NEKOD!
JK (2) =NEKODJ
c
c FORM NEW STIFFNESS
c
CALL NEWBM(E,G,RO,WGHT,COPROP,SFT,NUMF I X,NUMETP)
c
c ADD GRAVITY LOADING ... POINT LOADS ONLY COMPUTED
c
DO 180 i=1,3
DO 180 J=1,4
RF (1,J) =RF (1,J)+EMUL (1 ,J) *XWT (i)
180 RF (1+6,J)=RF (1+6,J) +EMUL (I ,J) *XWT (1+6)
c
C FORM ELEMENT LOCATION MATRIX
C
185 CONTINUE
DO 170 M=1,6
LM(M)=1D(NI,M)
LM(M+12) =0
LM (M+18) =0
170 LM (M+6) =1D (NJ,M)
o
NS=12
ND=12
o
o TRANSFORM TO MASTER DEGREES OF FREEDOM
C
c
CALL SLAVE (X,Y,Z,I1D,NUMNP,NI,NJ)
C
o WRITE ELEMENT INFORMATION ON TAPE
c
NDM=24
CALL CALBAN (MBAND,NDIF,LM,XM,ASA,RF,ND,NDM,NS)
IF (MODEX.EQ.1) GO TO 300
WRITE (1) ND,NS, (LM(1),I=1,ND), ((SA(I,J),I=1,NS),J=1,ND),
1 ((SF(1,d),1=1,NS) ,J=1,4)
c
o CHECK FOR LAST ELEMENT
c
300 |F(NBEAM-NEL) 66,500,260
260 CONTINUE
IF (ML.GT.0) GO TO 65
IN =|NI
JN =|NJ
INCR=INC
GO TO 60
500 RETURN
c

1001 FORMAT (15,4F10.0)
1002 FORMAT (15,6F10.0)
1005 FORMAT (15,6F10.0/F15.0,5F10.0)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

1006 FORMAT (4F10.0)

c
2001 FORMAT (/// 20H MATERIAL PROPERTIES, // 5X,BHMATERIAL,BX,
1 JHYOUNG*S,6X,9HPO!I SSON*S, 11X, bLHMASS, 9X,, 6HWE | GHT, / TX,
2 6HNUMBER, 8X, JHMODULUS, 10X, 5HRAT 10,2 (8X, 7JHDENSITY), / 1X)
c

2002 FORMAT (8X,15,E15.4,F15.4,2E15.4)
2003 FORMAT (/// 26H BEAM GEOMETRIC PROPERTIES, // 5X,7HSECTION, 3X,

1 1OHAXIAL AREA,2(3X, 10HSHEAR AREA),6X,7HTORSION,2 (6X,
2 THINERTIA) ,/ 6X,6HNUMBER,9X,4HA (1) ,9X, 4HA (2) ,9X, kHA (3),
3 9X, kHJ (1), 9%, 4H1 (2) ,9X, LH1 (3), / 1X)

2004 FORMAT (7X,15,6E13.4)
2005 FORMAT (34H13 /D BEAM ELEMENTS, ///
36H NUMBER OF BEAMS =,15/
36H NUMBER OF GEOMETRIC PROPERTY SETS=,15/
36H NUMBER OF FIXED END FORCE SETS =,15/
. 36H NUMBER OF MATERIALS =,15)
2006 FORMAT (///25H ELEMENT LOAD MULTIPLIERS / 20X, 1HA,1kX, 1HB, 14X, THC,
1 14X, 1HD,/6H X-DIRLE15.6/ 6H Y-DIRLE15.6/ 6H Z-DIRLE15.6/)
2010 FORMAT (1H1,1H ,
1 '30XLOH FIXED END FORCES IN LOCAL COORDINATES '
2//'53H TYPE NODE FORCE X FORCE Y FORCE Z ',
3 '35H MOMENT X MOMENT Y MOMENT Z '
2011 FORMAT (1H ,13,6X,1HI,3X,6F12.3/1H ,9X,1HJ,3X,6F12.3/)
2013 FORMAT (1HO/
1 60H SECTION PROPERTIES OTHER THAN SHEAR AREAS MAY NOT BE SPECIF
2 3LHIED AS ZERO. EXECUTION TERMINATED.)
3000 FORMAT (1015,216,18)
LOOO FORMAT (22H13/D BEAM ELEMENT DATA, /// 3X,LHBEAM, 3 (3X,LHNODE) ,3X,

i 8HMATERIAL, 3X,7HSECTION, 3X, 17HELEMENT END LOADS, 3X,
2 QHEND CODES, / 7H NUMBER,5X, 2H-1,5X,2H-J,5X, 2H-K, 1X,
3 2(&X.6HNUMBER),hX.lHA,hX,]HB,hX.lHC,hX,lHD,bX,ZH—l,hX,
4 2H-J, / 1X)
LOO1 FORMAT (4 (2X,15),6X,15,5X,15,415,216)
4002 FORMAT (9HOBEAM NO ,15, 26H K NODE ON BEAM X-AXIS)
26H...... EXECUTION TERMINATED)

4003 FORMAT (36HOELEMENT CARD ERROR, ELEMENT NUMBER= 16)
LOOL FORMAT (1H ,31HNODAL POINT NUMBERS FOR ELEMENT,IS,'36HARE IDENTCAL
1 EXECUTION TERMINATED.')
L0005 FORMAT (BHOELEMENT, 15,39H HAS ZERO LENGTH. EXECUTION TERMINATED.)
END
cMMMMMMMMMMMMM axisymmetric element (should be deleted later)

SUBROUTINE ELAW (NUMTC,EE,E,C,P,ALP)

o
o CALLS? POSINV
C CALLED BY? PLNAX
c
COMMON /JUNK/ MAT,NT,TEMP,REFT,BETA,TAU(4),D (k,4),CC(L,L)
1 JXX (B) , 1FILLY (342)
COMMON /ELPAR/ NPAR(1L4),IFILL2(10)
DIMENSION E (NUMTC,11,1) ,EE (10) ,C (4,L) ,P (k) ,ALP (k)
C
C STRESS-STRAIN LAW IN N-S-T SYSTEM

FILE:

O

210

220

230
240

250
260

265

270

PSAP FRC A

OLD DOMINION UNIVERSITY

IF (NT.NE.1) GO TO 220

DO 210 KK=1,10

EE (KK) =E (1,KK+1,MAT)
GO TO 260

DO 230 I=2,NT
TI=E(1-1,1,MAT)

T2=E (I s 1 9MAT)

IF(T2.GE.TEMP) GO TO 240

CONTINUE
CONTINUE
RI=(T2-TEMP) / (T2-T1)
RJI=(TEMP-T1) / (T2-T1)
DO 250 KK=1,10

EE (KK) =E (1-1,KK+1,MAT) *R1+E (1 ,KK+1,MAT) *RJ

CONTINUE

DO 265 ti=1,4
DO 265 KK=1,k4
C(Il,KK)=0,
D(i1,KK)=0.

cC(l,1)= 1.0/ EE(1)
€C(2,2)= 1.0/ EE(2)
C(3,3)= 1.0/ EE(3)
C(1,2)= -EE (4) /EE (2)
C(1,3)= -EE(5) /EE (3)
C(2,3)= -EE(6) /EE (3)
c(2,1)=1¢c(1,2)
C(3,1)=1¢c(1,3)
€C(3,2)= €(2,3)
C(k,4)= 1.0/ EE(7)

D0 270 M=1,3
ALP (M) = EE (M+7)
CONT INUE

ALP (L) = 0.0

ROTATE MATERIAL PROPERTIES TO R-Z-T SYSTEM

|F (BETA.EQ.0.0) GO TO 500

ANG=BETA/57.2957795
SS=SIN (ANG)

ACC=COS (ANG)
§2=55%SS

C2=ACC*ACC
SC=SS*ACC

SET D FOR SIG(0)=D*SIG(G)

D(1,1)=C2
D(1,2) =52
D(1,L)=2,%SC
D(2,1)=S2
D(2,2)=C2
D(2,4)=-D(1,4)
0(3!3)=] .0
D(k,1)=-SC
D(L,2)=-D(4,1)

FILE:

(@]

(@]

(@]

o0

280
300

330
350

430

500

600

650

660

PSAP FRC A OLD DOMINION UNIVERSITY

D (4,4)=C2-S2
FORM (D) TRANSPOSE * (C)

DO 300 I=1,4

DO 300 J=1,4

SUM=0.

DO 280 M=1,k4
SUM=SUM+D (M, 1) *C (M, J)
cc(i,J)=SUM

FORM (D) TRANSPOSE * (C) * (D)

DO 350 I=1,4

DO 350 J=i,h

SUM=0.

DO 330 M=1,4
SUM=SUM+CC (1, M) *D (M, J)
C(1,J)=SUM

C(J,1)=SUM

TRANSFORM THERMAL EXPANSION COEFFICIENTS
XX (1) =C2%ALP (1) +S2*ALP (2)

XX (2) =S2%ALP (1) +C2*ALP (2)

XX (3) =ALP (3)

XX (4) =2.%SC% (ALP (1) -ALP (2))

DO 430 I=1,b4

ALP (1) = xX (1)

INVERT THE STRAIN-STRESS LAW

CALL POSINV (C,L4,L)

MODIFY FOR THE CONDITION OF PLANE STRESS

IF (NPAR (5) .NE.2) GO TO 660

c(1,N=cQ,1)- c(3,1)* €(1,3)/C(3,3)
c(1,2)= c(1,2)- €(3,2)* €(1,3)/C(3,3)
c(1,4)=c(,b)- c(3,8)* c(1,3)/c(3,3)
c(2,2)= €(2,2)- €(3,2)* C(2,3)/C(3,3)
C(2,4)= C(2,4)- C(3,4)% C(2,3)/C(3,3)
DO 650 i=1,4

DO 600 J=I,b4

cJ,nN=c(,J)

c(l,3)=0.

c(3,1)=0.

RESTRAINED THERMAL STRESSES

DO 670 I=1,k
P(1) = 0.

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

DO 670 M=1,4
670 P(1)=P(1)+C(t,M) *ALP (M)

700 RETURN
END
SUBROUTINE CROSS (A,B,C)

[}

CALLED BY? PLNAX

DIMENSION A(4),B(L),C(k4)
X=A (2) *B (3) -A (3) *B (2)
Y=A(3) *B (1) -A (1) *B (3)
Z=A (1) *B (2) -A (2) *B (1)

C (L) =SQRT (XXX+YXY+Z*Z)
C(3)=Z/C (L)

C(2)=Y/C (k)

C(1)=X/C (L)

RETURN

END

SUBROUTINE FORMB (S,T,B)

(@]

CALLED BY? QUAD

COMMON /ELPAR/ NPAR (14) ,NUMNP,MBAND,NELTYP,N1,N2,N3,N4,N5,MTOT,NEQ
COMMON /EM/ LM(12),u012,12),P(12,4) ,XxM(12),
1 71(20,4),1X(4),1E(5) ,NS,D(4,L) ,EMUL (4,5) ,RR (b) ,ZZ (&) ,H (6) ,HS (6),
2 HT(6) ,HR (6) ,HZ (6) ,FAC,XMM,PRESS, EE (10),TTI(4),PP(12,4),THICK
3 ,TMP (4) ,QP (12) ,ALP (L), IFILL2 (4236)
DIMENSION B(20,12)
DIMENSION 1 (6),JJ(6)
DATA 11/1,2,3,4,9,10/,4J/5,6,7,8,11,12/

SKH=1.0-§
SP=1.0+S
TM=1.0-T
TP=1.0+T

H(1) =SMXTM/L.
H(2) =SP*TM/4.
H (3) =SP*TP/4.
H{4) =SMXTP/4.
H(5)=(1.0-S%S)
- H(6)=(1.0-T*T)

HS (1) =-TM/L.
HS (2) =-HS (1)
HS (3) =TP/4.
HS (k) =-HS (3)
HS (5) =-2.%S
HS (6) =0.0

HT (1) ==SM/L,
HT (2) =-SP/L.
HT (3) =-HT (2)
HT (4) ==HT (1)

FILE:

OO0

(@}

OO0

100

190

200

PSAP FRC A OLD DOMINION UNIVERSITY
HT (5)=0.0
HT (6) =-2.%T

PZT=HT (1) *ZZ (1) +HT (2) *ZZ (2) +HT (3) *ZZ (3) +HT (L) *ZZ (L)
PZS=HS (1) *ZZ (1) +HS (2) *ZZ (2) +HS (3) *#ZZ (3) +HS (k) *ZZ (4)
PRS=HS (1) *RR (1) +HS (2) *RR (2) +HS (3) *RR (3) +HS (&) *RR (4)
PRT=HT (1) *RR (1) +HT (2) *RR (2) +HT (3) *RR (3) +HT (L) *RR (L)
XJ=PRS*PZT-PRT*PZS

PSR=PZT/XJ
PTR=-PZS/XJ
PSZ=-PRT/XJ
PTZ=PRS/XJ

DO 100 I1=1,6

HR (1) =PSR*HS (1) +PTR*HT (1)

HZ (1) =PSZ*HS (1) +PTZ*HT (1)

R=H (1) *RR (1) +H (2) *RR (2) +H (3) *RR (3) +H (L4) *RR (4)
I F (NPAR (5) .NE.O) R=THICK

FORM STRAIN DISPLACEMENT MATRIX

D0 200 K=1,6
I=11(K)
J=J4J (K)
B(1,1)=HR(K)
B(2,J) =HZ (K)

TEST FOR HOOP STRAIN EVALUATION (AXISYMMETRIC SOLID)

IF (NPAR (5) .GT.0) GO TO 190
SET HOOP STRAIN .EQ. RADIAL STRAIN IF ON C/L AXIS
IF(R.LT.1.0E-6)
*B(3,1)=B(1,1)

IF(R.GT.1.0E-6)
*B (3, 1) =H (K) /R

CONT INUE
B (L, 1)=HZ(K)
B (4, J) =HR (K)

FAC=XJ*R

RETURN

END

SUBROUTINE PLNAX (ID,X,Y,Z,T,NTC,WT,RO,WANG,E,NUMTC,NUMNP,B,BB)

CALLS? ELAW,QUAD,VECTOR,CROSS,DOT,CALBAN
CALLED BY? PLANE

DIMENSION X(1),Y(1),Z(1), 1D (NUMNP, 1) ,NTC (1) ,WT (1) ,RO(1) ,WANG (1),

1 E (NUMTC,11,1),T(1),B(20,12) ,BB(20,12)

COMMON /ELPAR/ NPAR (14) ,NUMNN,MBAND,NELTYP,N1,N2,N3,Nk,N5,MTOT,NEQ
COMMON /EM/ LM(12),5(12,12),P(12,4) ,xM(12),

1 TI(20,4), 1X (L), 1E(5) ,NS,D (k,b4) ,EMUL (&,5) ,RR (L) ,ZZ (k) ,H (6) ,HS (6) ,

FILE:

(@)

60

Chkx

70
75

O o0

ek

130

140

142

PSAP FRC A OLD DOMINION UNIVERSITY

2 HT (6) ,HR (6) ,HZ (6) ,FAC,XMM,PRESS, EE(10) ,TTI (&) ,PP(12,4) ,THICK
3 ,TMP (L) ,TP(12) ,ALP (&), IFILL2(L236)

COMMON /JUNK/ MAT,NT,TEMP,REFT,BETA,U(4),V (L), ,W(L),G (L), IFLL(390)
COMMON /EXTRA/ MODEX,NT8, IFILL3(14)

common /say/ neqq,numee, loopur,nnblock,nterms,option

common /what/ naxa (10000),irowl (10000), icolh {(10000)

NUME=NPAR (2)
NUMMAT=NPAR (3)
numee=nume
neqqg=neq
WRITE (6,2000) (NPAR(M),M=2,6)

READ AND PRINT OF MATERIAL PROPERTIES

DO 60 M=1,NUMMAT

READ (5,1010) MAT,NTC (MAT) ,WT (MAT) ,RO (MAT) ,WANG (MAT)
IF (NTC (MAT) .EQ.O0) NTC (MAT) =}

WRITE (6,2020) MAT,NTC (MAT) ,WT (MAT) ,RO (MAT) ,WANG (MAT)

NT=NTC (MAT)

READ (5,1005)

WRITE (6,2010)

CONT I NUE

DATA PORTHOLE SAVE

|F (MODEX.EQ.0) GO TO 75

DO 70 M=1,NUMMAT

WRITE (NT8) M,NTC (M) ,WT (M) ,WANG (M)

NT = NTC (M)

WRITE (NT8) ((E(1,J,M) ,J=1,11),I1=1,NT)

CONT INUE

CONTINUE

(E(1,J,MAT) ,J=1,11),1=1,NT)
(E(1,J,MAT) ,Jd=1,11),1=1,NT)

ELEMENT LOAD CASE MULTIPLIERS

»5) ,1=1,4)

READ (5,1002) ((EMUL (1,Jd),J=1,5
=1,5),1=1,4)

WRITE (6,2004) ((EMUL (1,J),Jd
DATA PORTHOLE SAVE
I'F (MODEX.EQ.1)

*WRITE (NT8) ((EMUL (1,J),J=1,5),1=1,4)

READ AND PRINT OF ELEMENT PROPERTIES

WRITE (6,2002)

N=0

READ (5,1003) M, (1E(I),I=1,5) ,REFT,PRESS,NS,KG,THICK
MAT=|E (5)

IF(KG.EQ.0) KG=1

IF (NPAR(5) .EQ.1) THICK=1.0

[F(NS.EQ.0) NS=k

IF(NS.LT.4) NS=1

IF((1E(3) .EQ.IE (L)) .AND. (NS.EQ.20)) NS=16

N=N+1
IF(M.EQ.N) GO TO 145
DO 142 I=1,4
IX(1)=1X(1)+KG

FILE:

O

145
148

149

Coledexe

(g}

150

153

155

157
158

160

PSAP FRC A OLD DOMINION UNIVERSITY

GO TO 149
DO 148 1=1,4
IX{1)=1E(1)

FORM CONSTITUTIVE LAW AND COMPUTE THERMAL STRESSES

NT=NTC (MAT)

WRITE (6,2003) N,IX,MAT,REFT,PRESS,NS,KG,THICK
DATA PORTHOLE SAVE

IF (MODEX.EQ.0) GO TO 150

WRITE (NT8) N,IX,MAT,REFT,PRESS,NS,THICK
GO TO 153

CONT INUE

I=1X(1)

J=1X(2)

K=1X(3)

L=1X (L)

TEMP = (T (1) +T (J)+T(K)+T (L)) /4.0
BETA=WANG (MAT)

XMM=RO (MAT)

WGT=WT (MAT)

CALL ELAW (NUMTC,EE,E,D,TTI,ALP)

CALCULATE ELEMENT STIFFNESS MATRIX

IF (NPAR(1) .EQ.3) GO TO 160
ND=8

0O 155 I=1,4

Pi=1X{1)

RR(I1)=Y(I1)

zz()=z(11)

TMP (1) = T(I1)

LM () =1D(11,2)
LM(1+4)=1D(11,3)

IF (MODEX.EQ.1) GO TO 300

CALL QUAD (B,BB)

DO 158 I=1,4

DO 157 L=1,4

P(l,L)=P(I,L)+XM(I) *WGTHEMUL (L, L)
P(1+k,L) =P (1+4,L)+XM (1) *WGT*EMUL (L, 5)
XM (1) =XM (1) *XMM

XM (1+4) =XM (1)

GO TO 300

ND = 12

I F (MODEX.EQ.1) GO TO 165

CALL VECTOR(V,X(1),Y(1),Z(1),x(d),YW),z())
CALL VECTOR (G, X (1),Y(1),Z(1),x(L),Y(L),Z())
CALL CROSS (V,G,W)

CALL CROSS (W,V,U)

CALL VECTOR (W, X (1),Y{1),Z(1),X(K),Y(K),Z(K))
RR (1)=0.0

ZZ(1)=0.0

FILE:

(@]

165

170

180

190

194

196

200

210

215

220

300

PSAP FRC A OLD DOMINION UNIVERSITY

RR (2) =V (4)
Z2(2)=0.0
RR (3) =W (L) *DOT (W, V)
ZZ (3) =W (L) *DOT (W, U)
RR (L) =G (L) *DOT (G, V)
ZZ (L) =G (L) *DOT (G, U)

D0 170 I=1,4

Li=1X(1)

TMP (1) = T(11)
LM(1)=1D(11,1)

LM (1+4)=1D(11,2)
LM(14+8) =10 (1 1,3)

IF (MODEX.EQ.1) GO TO 300

CALL QUAD (B,BB)

DO 190 i=1,3

DO 190 K=1,4

KK=4% (1-1)+K

DO 180 L=1,4

PP (KK,L)=V (1) %P (K,L)+U (1) *P (K+4,L)

DO 190 J=1,3

DO 190 L=1,4

LL=bx (J-1)+L

BB (KK,LL)=V (1)} *(S(K,L) %V {J)+5 (K, L+4) *U (J))

1 HU (1) % (S (K+h, L) ®V (J) +S (K+4, L+4) *U (J))

DO 196 I=1,12
D0 194 L=1,4

P(1,L)=PP(i,L)
DO 196 J=1,12
S(1,J)=B8B(1,J)
S(J,1N=5(1,J)

D0 210 K=1,NS

DO 200 L=1,4

00 200 J=1,3

LL=bs (J-1)+L

BB (K,LL)=B(K,L)*V (J)+B (K, L+L) *U (J)
DO 210 J=1,12 ’
B(K,J) =8B (K, J)

D0 220 I=1,4

DO 215 L=1,4

P(I ,L)=P (1 ,L)+XM (1) *WGT*EMUL (L, 3)
P(I1+k,L)=P (1+k4,L)+XM (1) *WGTXEMUL (L, 4)
P(148,L) =P (1+8,L) +XM (1) *WGT*EMUL (L, 5)
XM (1) =XM (1) %XMM

XM (1+4) =XM (1)

XM (1+8) =XM (1)

CALCULATION OF BAND WIDTH AND WRITES ELEMENT MATRICES ON TAPES

CALL CALBAN (MBAND,NDIF,LM,XM,S,P,ND,12,NS)

F

o000

ILE: PSAP FRC A OLD DOMINION UNIVERSITY
IF (MODEX.EQ.1) GO TO 310
WRITE (1) ND,NS, (LM(1),i=1,ND), ((B(1,Jd),1=1,NS),J=1,ND),
1 (T (1,d),1=1,NS) ,J=1,L4)
310 IF(N.EQ.NUME) RETURN
IF(N.EQ.M) GO TO 130
GO TO 140
1002 FORMAT (5F10.0)
1003 FORMAT (615,2F10.0,215,F10.0)
1005 FORMAT (8F10.0/3F10.0)
1010 FORMAT (215,3F10.0)
2000 FORMAT (// 23H NUMBER OF ELEMENTS =, 16 /
1 23H NUMBER OF MATERIALS =, 16 /
2 23H MAXIMUM TEMPERATURES , /
3 23H PER MATERIAL =, 16/
L 23H ANALYSIS CODE =, 16/
5 23H CODE FOR INCLUSION , /
6 23H OF BENDING MODES =, 16/
7 23H EQ.0, INCLUDE , /
8 23H GT.0, SUPPRESS , /777 1X)
2002 FORMAT (BH1ELEMENT,26X,4HMATL,5X,9HREFERENCE, 3X,8H1-J FACE,3X,
] 6HSTRESS, / 2X,6HNUMBER,5X, 1HI,5X, 1HJ,5X, 1HK,5X, 1HL, 2X,
2 LHTYPE, 3X, 1 IHTEMPERATURE , 3X,BHPRESSURE, 3X, 6HOPTION, kX,
3 2HKG, 3X, 9HTHICKNESS, / 1X)
2003 FORMAT (18,516,F14.3,E11.3,19,16,F12.4)

2004 FORMAT (/// 25H ELEMENT LOAD MULTIPLIERS, // 10H LOAD CASE,4X,
1 1 THTEMPERATURE, 3X, 8HPRESSURE, 3X, 9HX-GRAVITY, 3X,
2 gHY-GRAVITY, 3X,9HZ-GRAVITY, // 5X,1HA,F19.3,F11.3,3F12.3 /
3 5X,1HB,F19.3,F11.3,3F12.3 / 5X,1HC,F19.3,F11.3,3F12.3 /
L 5X,1HD,F19.3,F11.3,3F12.3)

2010

FORMAT (F12.2,3E12.4,3F9.4,E12.4,3E14.4)

2020 FORMAT (/// 25H MATERIAL |.D. NUMBER , 15/
] 25H NUMBER OF TEMPERATURES =, 15 /
2 25H WEIGHT DENSITY =, El4.b /
3 25H MASS DENSITY =, Elh.b /
L 25H BETA ANGLE =, F9.3 //
5 12H TEMPERATURE, 8X, LHE (N) ,8X, LHE (S) , 8X, 4HE (T) , 3X, 6HNU (NS) ,
6 3X, 6HNU (NT) , 3X, 6HNU (ST) , 7X, 5HG (NS) , 6X,8HALPHA (N) , 6X,
7 8HALPHA (S) ,6X,8HALPHA(T)) :
END

SUBROUTINE QUAD (B,BB)

CALLS? FORMB,VECTOR
CALLED BY? PLNAX

COMMON /ELPAR/ NPAR (14) ,NUMNP,MBAND,NELTYP,N1,N2,N3,Nk,N5,MTOT,NEQ
COMMON /EM/ LM(12),5(12,12),P(12,4) ,XM(12),
] TI(20.h).IX(h).lE(S),NS.D(h,h).EMUL(A.S).RR(b),ZZ(h),H(6),HS(6).

2 HT (6) ,HR (6) ,HZ (6) ,FAC, XMM,PRESS, EE (10) ,TT! (&) ,PP(12,4) ,THICK
3 ,TMP (L) , TP (12) ,ALP (L) , IFILL2 (k236)

COMMON /JUNK/ MAT,NT,TEMP,REFT,BETA, IFILL] (422)

DIMENSION B(20,12),BB(20,12)

DIMENSION SS(Z),TT(Z),HH(Z),SSS(5).TTT(S),IVECT(h),JVECT(h),V(h)
DATA SSS/0.,-1.,1.,0.,0./, TTT/0.,0.,0.,-1.,1./

DATA SS/-0.57735026918963,0.57735026918963/

F

(@]

(@]

ILE:

160

170

200

Loo

450
500

515

530

PSAP FRC A OLD DOMINION UNIVERSITY

DATA TT/-0.57735026918963,0.57735026918963/
DATA HH/1.,1./, IVECT/L,2,1,3/, JVECT/1,3,2,4/

D0 170 J=1,12
XM(J)=0.0
TP(J) = 0.0
D0 160 1=1,20
BB (1,J)=0.0
B(1,J)=0.0

DO 170 1=1,12
S(1,J)=0.0

DO 500 11=1,2

DO 500 JJ=1,2

CALL FORMB(SS(11),S5(JJ),B)

TEMP = 0.0

D0 200 i=1,4

TEMP = TEMP + H(I)* TMP (1)

FAC=FAC*HH (JJ) *HH (11)

FTP = TEMP - REFT

DO 40O J=1,12
D1=(D(1,1)*B(1,J)+D(1,2) *B(2,J)+D (1,3) *B (3, J)+D (1, 4) *B (4, J)) *FAC
D2=(D(2,1) *B (1,4)+D (2,2) *B(2,J) +D (2, 3) *B (3, J) +D (2, 4) *B (4, J)) *FAC
03=(D(3,1) *B(1,J)+D(3,2) *B(2,J)+D (3,3) *B (3,J) +D (3, 4) *B (4, J)) *FAC
Dh=(D (4, 1) *B (1,J)+0 (4,2) *B (2,J) +D (4, 3) *B (3,J) +D (4, 4) *B (&, J)) XFAC
TP(J) = TP(J) + FTP*(D1*ALP (1) +D2*ALP(2) + D3%ALP (3) + DL*ALP (L))
DO 400 1=J,12
S(1,J)=S(1,4)+B(1,1) *D1+B (2, 1) *D2+B (3, 1) *D3+B (L, |) *Dk
S(J,1)=s(1,J)

DO 450 i=1,4
XM (1)=XM(1)+FAC*H (1)
CONT INUE

FORM STRESS DISDLACEMENT MATRIX

LL=NS/4
D0 530 L=1,LL ,
CALL FORMB (S5S(L),TTT(L),BB)

TEMP = 0.0
DO 515 K=1,4

TEMP = TEMP + H(K)* TMP (K)
FAC = TEMP - REFT

DO 530 Ii=1,4

f=i +h*x (L-1)

TI(I,4) = -TTI(11)* FAC

D0 530 J=1,12

B(1,J)=0.0

D0 530 K=1,4
B(l1,4)=B(I1,J)+D(11,K)*BB(K,J)

ELIMINATE EXTRA DEGREES OF FREEDOM

FF(1X(3) .EQ.1X(4)) GO TO 560
IF(NPAR(6) .NE.O) GO TO 560

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

DO 550 NN=1,4
L=12-NN
K=L+1
C = TP(K) /S (K,K)
D0 535 J=1,NS

535 TI(J,4) = T1(J,4) + C* B(J,K)
DO 550 I=1,L
c=5(1,K) /S (K,K)
TP(1) = TP(I) - Ckx TP(K)
DO 540 J=1,NS

540 B(J,1)=B(J,1)-C*xB(J,K)
DO 550 J=1,L

550 S (1,Jd)=5(1,J)-C*S(K,J)

ROTATE STRESS-DISPLACEMENT TRANSFORMATION TO GIVE STRESSES
NORMAL AND PARALLEL TO SIDES. SIMILARLY, ROTATE INITIAL STRESSES.

OO0

560 NSET = LL-}
IF(NSET.LE.O) GO TO 730
DO 720 L=1,NSET
IV = IVECT(L)
JV = JVECT (L)
CALL VECTOR (V,RR(IV),ZZ(1V),0.0,RR(JV),ZZ(JV),0.0)

s2 = v(1)xv(1)

€2 = V(2)*v(2)

SC =-V (1) *V(2)

Il = LkL+1

12 = 11+]

I = }1+3

T =T1(11,4)

T2 = T1(12,4)

Th = TI(14,4)

TE = 2.0%SC*TL

TI(11,4) = C2xT1+52%T2+T5
TI(12,4) = S2%T1+C2%T2-T5
TI(1h,4) = SCx(T2-T1)+(C2-52) *Th
Do 710 J=1,8

Bl = B(11,J)

B2 = B(12,J)

Bh = B(IL,J)

B5 = 2,0%SC*BL

B{I1,J) = C2%B1+52%B2+B5
B(12,J) = S2%#B1+C2%B2-B5
710 B(Ik4,J) = SCx(B2-B1)+(C2-52) *Bk
720 CONTINUE
730 CONTINUE

DO 660 L=1,4
DO 600 I=1,NS
600 TI(1,L) = T1(l,4)* EMUL(L,1)

DO 660 1=1,8
660 P(I1,L) = TP(1)* EMUL(L,1)
c
c CALCULATE PRESSURE LOADS ON i-J FACE

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

DR=RR (2) -RR (1)
0Z=2Z (1) -22(2)
RI=PRESS* (2.*RR (1) +RR (2)) /6.
RJ=PRESS* (2.%RR (2) +RR (1)) /6.
IF (NPAR(5) .EQ.0) GO TO 670
RI=PRESS*THICK/2.
RJ=R|
670 DO 700 L=1,4
P(1,L)=P (1,L)+DZ*RI*EMUL (L,2)
P(5,L) =P (5,L) +DR*R1*EMUL (L,2)
P(2,L)=P(2,L)+DZ*RJ*EMUL (L, 2)
700 P(6,L)=P(6,L) +DRXRJI*EMUL (L, 2)
RETURN :
END
SUBROUTINE VECTOR(V,XI,Y!,Z1,XJ,YJ,ZJd)

OO0

CALLED BY? PLNAX,QUAD

DIMENSION V (4)

X=XJ-XI

Y=YJ-YI

Z=2J-1Z|

V (4) =SQRT (X*X+Y*Y+Z%xZ)

V(3)=Z/V (L)

V(2)=Y/V (L)

V(1) =x/v(4)

RETURN

END

SUBROUTINE POSINV (A,NMAX,NDD)

C CALLED BY? ELAW
DIMENSION A (NDD,NDD)
DO 200 N=1,NMAX

D=A (N, N)

DO 100 J=1,NMAX
iF(D.EQ.0.)D=0.005
100 A(N,J)=-A(N,J) /D

DO 150 I=1,NMAX
IF(N-1) 110,150,110
110 DO 140 J=1,NMAX
IF(N-J) 120,140,120
120 A(1,J)=A(1,J)+A(1,N)*A(N,J)
140 CONTINUE
150 A(1,N)=A(1,N)/D

A{N,N)=1.0/D
200 CONTINUE

RETURN

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

END
FUNCTION DOT (A,B)
c
" CALLED BY? PLNAX
C
DIMENSION A (L) ,B(4)
DOT=A (1) *B (1) +A (2) *B (2) +A (3) *B (3)
RETURN
END
SUBROUT INE PLANE
c
c CALLS? PLNAX,STRSC
c CALLED BY? ELTYPE
c
COMMON /one/ A (1)
COMMON /ELPAR/ NPAR (14) ,NUMNP,MBAND,NELTYP,N1,N2,N3,NL,N5,MTOT,NEQ
COMMON /EM/ NS,ND,B (k2,63),T1 (42,4) ,LM(63)
COMMON /JUNK/ LT,LH,L,!PAD,SG(20),S1G(7),EXTRA(150) ,N6,N7,N8,N9,
] N1O,N11,N12, IFILL (65)
COMMON /EXTRA/ MODEX,NT8,N10SV,NT10,IFILL2(12)
common /say/ neqq,numee, loopur,nnblock,nterms,option
common /what/ naxa (10000) , i row! (10000) , icolh (10000)
DIMENSION STRLAB (5)
DATA STRLAB/3HCEN,3HL-1,3HJ-K,3HI-J, 3HK-L/
c
IF (NPAR(1) .EQ.0) GO TO 200
{F (NPAR (1) .EQ.3) NPAR(5)=2
IF (NPAR(5) .EQ.O) WRITE (6,2000)
IF (NPAR(5) .EQ.1) WRITE (6,2001)
IF (NPAR (5) .EQ.2) WRITE (6,2002)
(F (NPAR(1) .EQ.3) WRITE (6,2003)
IF (NPAR (6) .NE.O) WRITE (6,2004)
IF (NPAR (3) .EQ.O) NPAR(3) =1
IF (NPAR (L) .EQ.0) NPAR (L) =1
N6=N5+NUMNP
N7=N6+NPAR (3)
N8=N7+NPAR (3)
N9=N8+NPAR (3)
N10=N9+NPAR (3)
N11=N10+11%NPAR (L) *NPAR (3)
N12=N11+2L40
MM=N12+2L40-MTOT
IF (MM.GT.0) CALL ERROR (MM)
c
CALL PLNAX (A (N1),A(N2),A(N3),A(NL) ,A(N5),A(N6),A(NT7),A(NB),
1 A(N9) , A (N10) ,NPAR () ,NUMNP,A (N11) ,A(N12))
c
RETURN
c

200 WRITE (6,2006)
NUME=NPAR (2)
DO 800 MM=1,NUME
CALL STRSC(A(N1),A(N3),NEQ,0)
Ck%% STRESS PORTHOLE

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

IF(NTOSV.EQ.T)
*WRITE (NT10) NS
IF (NS.EQ.1) GO TO 800
WRITE (6,3000) MM
D0 700 L=LT,LH
CALL STRSC(A(N1),A(N3),NEQ,1)
ITAG = 0
510 DO 600 KK=1,NS,k4
ITAG = ITAG + 1}
DO 520 1I=1,4
| 1=KK=1+1i
520 SIG(1)=SG(I1)
CC=(SIG(1)+SI1G(2)) /2.0
BB=(SIG(1)-S1G(2)) /2.
CR=SQRT (BB**2+S51G (L) *%2)
S1G(5) =CC+CR
SI1G(6)=CC-CR
SIG(7)=0.0
{F((BB.EQ.0.0) .AND. (SIG(L4).EQ.0.0)) GO TO 530
SI1G(7)=28.648%ATAN2 (SIG (4) ,BB)
C*x%%x STRESS PORTHOLE
530 IF(NIOSV.EQ.1)
*WRITE (NT10) MM,L, (SIG(1),t=1,7)
600 WRITE (6,3001) L,STRLAB(ITAG), (SIG(1),i=1,7)
WRITE (6,3002)
700 CONTINUE
800 CONTINUE
RETURN
2000 FORMAT (22HTAXISYMMETRIC ANALYSIS)
2001 FORMAT (22HIPLANE STRAIN ANALYSIS)
2002 FORMAT (22HIPLANE STRESS ANALYSIS)
2003 FORMAT (18H MEMBRANE ELEMENTS)
2004 FORMAT (30H INCOMPATIBLE MODES SUPPRESSED)
2006 FORMAT (GLHIT WO -D I MENS I ONAL FINITE ELEM,
84 E NT S,/// BX,32H1. CENTROID STRESSES REFERENCED,
26H TO LOCAL Y-Z COORDINATES.,/ 8X, 12H2. MID-SIDE,
51H STRESSES ARE NORMAL AND PARALLEL TO ELEMENT EDGES.,
/7 1X)
3000 FORMAT (10HOELEMENT (,15,1H),// 2X,4HLOAD,2X,3HLOC, 12X, 3HS11, 12X,
] 3HS22,12X,3HS33,12X,3HS12,10X,5HS-MAX, 10X, 5HS-MIN,5X,
2 SHANGLE, / 1X)
3001 FORMAT (16,2X,A3,6E15.5,F10.2)
3002 FORMAT (1HO)
END
subroutine assm(a,b,11,ntr,neq)
common /say/ neqq,numee, loopur,nnblock,nterms,option
common /what/ naxa (10000), irow! (10000), icolh (10000)
COMMON /EM/ LRD,ND,LM(63),IPAD,SS(2331)
dimension a(ntr),b(neq,11)
dimension sd(24,24)
neq=neqq
nume=numee
do 71 i=l,nterms
71 a(i)=0
C contribution from each element

F S VNI N e

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

rewind 14

rewind 13

do 72 i=1,nume

read (14) 1rd,nd, (Im(ii),ii=1,nd)
read (13) ((sd (ii,jj)»jj=1,nd),ii=1,nd)
do 79 j=1,nd

ji=1m(j)

if(jj.eq.0) go to 79

do 76 k=1,nd

kk=1m (k)

if(kk.eq.0.or.kk.1t.jj) go to 76
locate=naxa {jj)+kk-]]

a(locate) =a(locate)+sd (j,k)

76 continue

79 continue

72 continue
return
end

SUBROUT INE ADDSTF (A,B,STR,TMASS,NUMEL,NBLOCK,NE2B,LL,MBAND,ANORM,
INVV)

CALLED BY? MAIN

FORMS GLOBAL EQUILIBRIUM EQUATIONS IN BLOCKS

OO0 0O00O0

DIMENSION A(NEZB,MBAND),B(NEZB,LL),STR(h,LL),TMASS(NEZB)

COMMON /DYN/ NT,NOT,ALFA,DT,BETA,NFN,NGM,NAT,NDYN

COMMON /EM/ LRD,ND,LM(63),IPAD,SS(2331)

COMMON /EXTRA/ MODEX,NT8, IFILL (1L)

common /say/ neqq,numee,loopur,nnblock,nterms,option
common /what/ naxa (10000) ,irowl (10000) , icolh (10000)

NEQB=NE2B/2
K=NEQB+]
X=NBLOCK
MB=SQRT (X)
MB=MB/2+]1
NEBB=MB*NE 2B
MM=1

NDEG=0
NVV=0
ANORM=0.
NSH1FT=0
REWIND 3
REWIND &
REWIND 9

[}

READ ELEMENT LOAD MULTIPLIERS

WRITE (6,2000)
DO 50 L=1,LL
READ (5,1002) (STR(I,L),t=1,4)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

50 WRITE (6,2002) L, (STR(I,L),I=1,4)
IF (MODEX.EQ.0) WRITE (8) STR

FOR A STEP-BY-STEP ANALYSIS (NDYN.EQ.4) READ THE SOLUTION
CONTROL CARD. THE TIME STEP (DT) AND THE DAMPING COEFFICIENTS
(ALFA/BETA) ARE REQUIRED FOR THE ASSEMBLY OF THE EFFECTIVE
SYSTEM STIFFNESS MATRIX IN THIS ROUTINE.

OO0 O0O0

I F (NDYN.NE.4) GO TO 65

READ (5,1004) NFN,NGM,NAT,NT,NOT,DT,ALFA,BETA
WRITE (6,2004) NFN,NGM,NAT,NT,NOT,DT,ALFA,BETA
IF (NAT.EQ.O) NAT = 1

IF(NOT.EQ.O) NOT = 1

IF(DT.GT.1.0E-12) GO TO 55

WRITE (6,3000)

STOP

COMPUTE INTEGRATION COEFFICIENTS FOR ASSEMBLY OF EFFECTIVE
SYSTEM STIFFNESS (STEP-BY-STEP ANALYSIS ONLY)

OO0

1.4

TETAXDT

DT 1%x%2
(6.+3.*%ALFAXDT1) / (DT2+3. %BETA%DT1)

55 TETA
0TI
DT2
AO

65 IF (MODEX.EQ.1) RETURN

(@]

FORM EQUATIONS IN BLOCKS (2 BLOCKS AT A TINME)

DO 1000 M=1,NBLOCK ,2

DO 100 I=1,NE2B

DO 100 J=1,MBAND
100 A(1,J)=0.

READ (3) ((B(I,L),!=1,NEQB),L=1,LL), (TMASS(I),I=1,NEQB)

IF (M.EQ.NBLOCK) GO TO 200

READ (3) ((B(I,L),!=K,NE2B),L=1,LL), (TMASS (1), |=K,NE2B)
200 CONTINUE

REWIND 7

REWIND 2

NA=7

NUME=NUM7?

IF (MM.NE.1) GO TO 75
NA=2

NUME=NUMEL

NUM7 =0

75 DO 700 N=1,NUME
READ (NA) LRD,ND, (LM(1),1=1,ND), (SS(1),I=1,LRD)
MSHFT = ND % (ND+1) /2 +4 *ND
DO 600 I=1,ND
LMN=1-LM (1)
I1=LM(I)-NSHIFT
I'F (I1.LE.0.OR.II1.GT.NE2B) GO TO 600

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

[MS=1+MSHFT
TMASS (11)=TMASS (11)+ SS (IMS)
DO 300 L=1,LL
DO 300 J=1,4
KK = ND *(ND+1) /2 + ND*(J-1)
300 B(I1,L)=B(I1,L)+SS (1+KK) *STR (J, L)
D0 500 J=1,ND
JJ=LM (J) +LMN
I'F (JJ) 500,500,390
390 IF(J-1) 396,394,394
394 KK = ND*1=(I1-1)%1/2 +J-ND
GO TO 400
396 KK =ND%J - (J=1)%J/2+1-ND
4oO A(I1,Jd)=A(11,JJ)+SS(KK)
500 CONTINUE
600 CONT!INUE

(@}

DETERMINE |F STIFFNESS 1S TO BE PLACED ON TAPE 7

{F (MM.GT.1) GO TO 700
DO 650 I=1,ND
I1=LM (1) =NSHIFT
IF(11.GT.NE2B.AND.I|.LE.NEBB) GO TO 660
650 CONT!INUE
GO TO 700
660 WRITE (7) LRD,ND, (LM(1),1=1,ND), (S5(1),I=1,LRD)
NUM7=NUMT7+1

700 CONTINUE
DO 710 L=1,NEQB
ANORM=ANORM + A (L, 1)
IF (A(L,1).NE.O.) NDEG=NDEG + 1
IF (A(L,1).EQ.0.) A(L,1)=1.E+20
IF (TMASS (L) .NE.O.) NVV=NVV + 1
710 CONTINUE

FOR STEP-BY-STEP ANALYSIS ADD THE MASS CONTRIBUTIONS TO
THE EQUATION DIAGONAL COEFFICIENTS

e NeNeN e

IF (NDYN.NE.4) GO TO 716
DO 714 1=1,NEQB
714 A(1,1) = A(l,1) + AO* TMASS (1)
WRITE (&) -((A(1,J),1=1,NEQB) ,J=1,MBAND)
GO TO 718
716 WRITE (&) ((A(1,J),1=1,NEQB) ,J=1,MBAND) , ((B(I,L),!=1,NEQB),L=1,LL)
cmo
718 WRITE (9) (TMASS (1), I=1,NEQB)

c

¢ moayyad

c do 212 i=1,neqgb

c212 write(6,213) (a(i,j),j=1,mband)
c213 format (6el12.5)

IF (M.EQ.NBLOCK) GO TO 1000
DO 720 L=K,NE2B

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

ANORM=ANORM + A(L,1)

IF (A(L,1) .NE.O.) NDEG=NDEG + |

IF (A(L,1).EQ.0.) A(L,1)=1.E+20

IF (TMASS (L) .NE.O.) NVV=NVV + |
720 CONTINUE

IF (NDYN.NE.L) GO TO 726
DO 724 I=K,NE2B
724 A(1,1) = A(1,1) + AO* TMASS (1)
WRITE (4) ((A(1,J),1=K,NE2B),J=1,MBAND)
go to 728
726 write(4) ((a(i,j),i=k,ne2b),j=1,mband), ((b(i,!1),i=k,ne2b),l=1,11)
728 WRITE (9) (TMASS (1), I=K,NE2B)

IF (MM.EQ.MB) MM=0
MM=MM+1
1000 NSHIFT=NSHIFT+NE2B
IF (NDEG.GT.0) GO TO 730
WRITE (6,1010)
STOP
730 ANORM= (ANORM/NDEG) *1.E-8
c
RETURN
1002 FORMAT (4F10.0)
1004 FORMAT (515,3F10.0)
1010 FORMAT (51HOSTRUCTURE WITH NO DEGREES OF FREEDOM CHECK DATA)
2000 FORMAT (/// 10H STRUCTURE, 13X, 7HELEMENT, 4X, 4HLOAD, kX,
1 1THMULTIPLIERS,/ 10H LOAD CASE, 12X, 1HA,9X, 1HB,9X, 1HC,9X, 1HD,/ 1X)
2002 FORMAT (16,7X,4F10.3)
2004 FORMAT (LSHISTEP -BY-STEP SOLUTION |,

1 3JHCONTR O L I NFORMAT I ON, ///

2 5X, 35HNUMBER OF TIME VARYING FUNCTIONS =, 1|5 //

3 5X, 35HGROUND MOTION INDICATOR =, |5 /

L 8x, 10HEQ.O, NONE, /

5 8X, 29HGT.O, READ ACCELERATION INPUT, //

6 5X, 35HNUMBER OF ARRIVAL TIMES =, 15 /

7 8X, 26HEQ.O, ALL FUNCTIONS ARRIVE, /

8 8x, 18H AT TIME ZERO, //

9 5X, 35HNUMBER OF SOLUTION TIME STEPS =, |5 //

A 5X, 35HOUTPUT (PRINT) INTERVAL =, 15 1/

B 5X, 35HSOLUTION TIME INCREMENT =, E1k.L4 //

C 5X, 30HMASS- PROPORTIONAL DAMPING, /

D 5X, 35HCOEFFICIENT (ALPHA) =, Eib.bk //

E 5X, 30HSTIFFNESS-PROPORTIONAL DAMPING, /

F 5X, 35HCOEFFICIENT (BETA) =, El4.k /// 1X)
3000 FORMAT (27HO%*** ERROR ZERO TIME STEP, / 1X)

END

chkdikkkkkhkhkkkhkkkkkkkkhkkhkkkk s7.frc
SUBROUTINE ADDMAS (TMASS,BLKMAS,NEQ,NEQB,NBLOCK)

CALLED BY? STEP
THIS ROUTINE READS THE SYSTEM MASS MATRIX IN BLOCKED FORM

FROM *TAPEQ* AND ASSEMBLES THE BLOCKS INTO A SINGLE VECTOR
NEQ WORDS IN LENGTH -- I.E., SYSTEM MASS MATRIX (DIAGONAL)

OO0 o0

FILE:

oo

(]

100
200

250

100

Chedek

120

140
160

210
215

PSAP FRC A OLD DOMINION UNIVERSITY

IS STORED IN CORE. SYSTEM MASS MATRIX *TMASS* |S SAVED ON
*TAPE3%.

DIMENSION TMASS (NEQ) ,BLKMAS (NEQB)

NT3 =3
REWIND NT3
NTS = §
REWIND NT9

KSHIFT = 0
LOOP ON THE TOTAL NUMBER OF SYSTEM EQUATION BLOCKS

DO 200 K=1,NBLOCK

READ (NT9) BLKMAS

K1 = KSHIFT

DO 100 L=1,NEQB

K1 = Kl+1

IF(K1.GT.NEQ) GO TO 250
TMASS (K1) = BLKMAS (L)
CONT INUE

KSHIFT = KSHIFT+NEQB
CONTINUE

WRITE (NT3) TMASS

RETURN
END
SUBROUTINE BANDET (A,B,V,MAXA,NN,NWA,RA,NSCH,DET,ISCALE,KK)

CALLED BY? SECNTD

COMMON /TAPES/NSTIF,NRED,NL,NR,NT,NMASS
DIMENSION A (NWA),B(1),V(1),MAXA(1)

NR=NN-1 _
IF (KK-2) 100,700,800

TOL=1.0E+07
RTOL=1.0E-10
SCALE=2.0D0%*%200
SCALE=2.DO*%166

SCALE=2.D0%*10

NTF=3

|S=1

REWIND NSTIF

READ (NSTIF) A

DO 140 I=1,NN
A(1)=A(1)-RAXB (1)

IF (NWA.EQ.NN) GO TO 230
DO 200 N=1,NR

| H=N+NWA-NN

IF (A(IH)) 220,215,220
IH=1H-NN

FILE:

220

500
501
502

221

225

226

245
235
260
240

200
230

290

280

320
300

340
350

370

700

PSAP FRC A OLD DOMINION UNIVERSITY

GO TO 210
MAXA (N) =IH
Piv=A(N)
IF(PIV) 221,500,221
IS = |5+]
tF(IS.LE.NTF) GO TO 502
WRITE (6,1000) NTF,RA
STOP
RA = RA%*(1.0-RTOL)
GO TO 120
I L=N+NN
L=N
D0 240 I=IL, IH,NN
L=L+]
C=A(I)
IF (C) 225,240,225
C=C/PIV
IF (ABS(C) .LT. TOL) GO TO 235
S=15+1
IF (IS.LE.NTF) GO TO 245
GO TO 501
RA=RA* (1.0-RTOL)
GO TO 120
J=L-|
DO 260 K=1,!IH,NN
A(K+J) =A (K+J) -C*A (K)
A1) =C
CONTINUE
CONTINUE
IF (A(NN) .NE.O.0) GO TO 280
AA=ABS {A (1))
D0 290 I=2,NR
AA=AA+ABS (A (1))
A (NN) =~ (AA/NR) *1.0E-16

NSCH=0
1SC=0

DET=1.0

D0 300 I=1,NN
IF (ABS (DET) .LT. SCALE) GO TO 320
DET=DET/SCALE

1SC=1SC+]

DET=DET*A (1)

IF (A1) .LT.0.) NSCH=NSCH+1

IF (1SCALE.LT.1000) GO TO 340
ISCALE=ISC

GO TO 900

IF (1SC-1SCALE) 350,900,370
DET=DET/SCALE

GO TO 900

DET=DET*SCALE

GO TO 900

I L=NN

F

c

OO0 O0O0O00O0000O0000000O0

ILE:

PSAP FRC A OLD DOMINION UNIVERSITY

DO 400 N=1,NR

C=V(N)

V(N) =C/A (N)

IF (NWA-NN) 410,400,410

L0 IL=IL+]
I H=MAXA (N)
K=N
DO 420 I=IL,IH,NN
K=K+1
420 V(K)=V(K)-C*A(I)
LOO CONTINUE
V (NN) =V (NN) /A (NN)
800 IF (NWA-NN) 430,900,430
4L30 N=NN
D0 LLO L=2,NN
N=N-1
IL=N+NN _
IH=MAXA (N)
K=N
DO 460 1=IL,IH,NN
K=K+1
L60 V(N)=V(N)-A(1)*V(K)
LLO CONTINUE
900 RETURN
1000 FORMAT (37HOX*XERROR SOLUTION STOP IN *BANDET*, / 12X,
1 1H(,13,37H) TRIANGULAR FACTORIZATIONS ATTEMPTED, / 12X,
2 16HCURRENT SHIFT = ,E20.14 / 1X)
END

SUBROUTINE BENDDC (NEL,N!t,NJ,X1,X2,X3,R,KODE,A,MODEX,THETA,TOL,PI)

CALLED BY? PIPEK

COMPUTATION OF DIRECTION COSINE ARRAY FOR THE LOCAL AXES OF A

CIRCULAR BEND PIPE ELEMENT

NEL = ELEMENT NUMBER

NI = NODE NUMBER AT END |

NJ = NODE NUMBER AT END J

X1 = GLOBAL COORDINATES OF END |

X2 = GLOBAL COORDINATES OF END J

X3 = GLOBAL COORDINATES OF THE THIRD POINT

KoDt = CODE DEFINING THE THIRD POINT
(EQ.1, TANGENT INTERSECTION POINT)
(EQ.2, CENTER OF CURVATURE)

R = RADIUS OF THE BEND

A = MATRIX OF DIRECTION COSINES RELATING LOCAL TO THE
GLOBAL SYSTEM. A(I,J) 1S THE PROJECTION ON THE
I-TH GLOBAL AXIS OF A UNIT VECTOR IN THE LOCAL
J-DIRECTION.

MODEX = EXECUTION MOOE

(EQ.0, SOLUTION)
(EQ.1, DATA CHECK)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

THETA
ToL
Pl

CENTRAL ANGLE SUBTENDED BY THE ARC OF THE BEND
DIMENSIONAL TOLERANCE USED FOR ERROR TESTING
3.14159...

OO0

DIMENSION X1(3),X2(3),X3(3),A(3,3),B(3)

common /say/ neqq, humee, loopur,nnblock,nterms,option
common /what/ naxa (10000),irowl (10000), icolh (10000)
GO 70 (10,110),KODE

TANGENT INTERSECTION IS THE THIRD POINT

1. LOCAL X-AXIS VECTOR

OO0

10 A(1,1) = X3(1)-X1(1)
A(2,1) X3(2)-x1(2)
A(3,1) X3(3)-x1(3)
XLIT = A(1, 1) %%2 + A(2,1)%%2 + A(3,1) #*2
XL1T =SQRT (XL1T)
IF(XLIT.GT.1.0E-8) GO TO 20
NN = NI

15 WRITE (6,3000) NEL,NN
MODEX = 1
RETURN

20 DUM = 1.0/ XLIT
D0 25 K=1,3

25 A(K,1) = A(K,1)* DUM

e N el

2. VECTOR FROM TANGENT POINT TO NODE J

DC 30 K=1,3
30 B(K) = X2 (K)-X3(K)
XLT2 = B (1) ®*%2 + B (2) *#%2 + B (3) #%2
XLT2 =SQRT (XLT2)
IF(XLT2.GT.1.0E-8) GO TO LO
NN = NJ
GO TO 15

3. COMPARE DISTANCES BETWEEN THE NODES AND THE COMMON TANGENT
INTERSECTION POINT

eNesNeNel

LO DIF =ABS (XL1T-XLT2)
IF(DIF.LE.TOL) GO TO 42
WRITE (6,3010) NEL,TOL,XL1T,XLT2
MODEX = 1
RETURN

L2 CONTINUE

L. LOCAL Z-AXIS

o

A(2,1)*B(3) - A(3,1)*B(2)
A(3,1)*B(1) - A(1,1)%B(3)
A(1,1)*%B(2) - A(2,1)*B(1)

A(1,3)
A(2,3)
A(3,3)
DUM = 0.0

FiLE:

o

(@}

OO0

(@]

Ly

L6
L8

50

110

120

125

130

135

PSAP FRC A OLD DOMINION UNIVERSITY

DO L& K=1,3

DUM = DUM + A(K,3) %*2

DUM =SQRT (DUM)

IF (DUM.GT.1.0E-8) GO TO 46
WRITE (6,3060) NEL

MODEX = 1

RETURN

DUM = 1.0/DUM

0o 48 K=]13

A(K,3) = A(K,3) * DUM

5. LOCAL Y-AX!IS

A(1,2) = A(2,3)%A(3,1) - A(3,3)*A(2,1)
A(2,2) = A(3,3)*A(1,1) - A(1,3)%A(3,1)
A(3,2) = A(1,3)%A(2,1) - A(2,3)*A(1,1)

6. COMPUTE THE CENTRAL ANGLE

DUM = XLIT/R

THETA = 2.0DO*ATAN (DUM)

CONTINUE

IF (THETA.GT.1.0E-8 .AND. THETA.LE.P!) RETURN
DUM = THETA*180.0/PI

WRITE (6,3020) DUM,NEL

MODEX = |

RETURN

CENTER OF CURVATURE IS THE THIRD POINT

1. LOCAL Y-AXIS VECTOR

A(1,2) = Xx3(1)-x1(1)
A(2,2) = X3(2)-x1(2)
A(3,2) = Xx3(3)-X103)
DIC = 0.0

DO 120 K=1,3

DIC = DIC + A(K,2)#%2

D1C =SQRT(D1C)
IF(D1C.GT.1.0E-8) GO TO 130
NN = NI

WRITE (6,3030) NEL,NN

MODEX = 1

RETURN

DUM = 1.0/ DIC

DO 135 K=1,3

A(K,2) = A(K,2)* DUM

2. COMPUTE THE VECTOR FROM NODE J TO THE C.C.

B(1) = X3(1)-x2(1)
B(2) = X3(2)-x2(2)
B(3) = X3(3)-x2(3)
D2C = 0.0

DO 140 K=1,3

FILE:

OO0

(@}

(@]

(o 2 e]

(@]

140

150

160

165

170

172

173

175

177

180

PSAP FRC A OLD DOMINION UNIVERSITY

D2C = D2C + B (K) **2

D2C =SQRT (D2C)
IF{D2C.GT.1.0E~8) GO TO 150
NN = NJ

GO TO 125

CONT I NUE

3. COMPARE COMPUTED RADI| VERSUS THE INPUT VALUE

DIF =ABS (R-D1C)
IF(DIF.LT.TOL) GO TO 165
NN = NI

RR = DIC

WRITE (6,3040) NN,NEL,R,RR
MODEX = 1

RETURN

DIF =ABS (R-D2C)
IF(DIF.LT.TOL) GO TO 170
NN = NJ

RR = D2C

GO TO 160

L. LOCAL Z-AXIS VECTOR

A(1,3) = A(2,2)*B(3) - A(3,2)*B(2)
A(2,3) = A(3,2)*B(1) - A(1,2)*B(3)
DUM = 0.0

DO 172 K=1,3

DUM = DUM + A(K,3) %%2

DUM =SQRT (DUM)

IF (DUM.LT.1.0E-8) GO TO 177
DUM = 1.0/DUM

DO 173 K=1,3

A(K,3) = A(K,3) * DUM

5. TEST FOR NODES | AND J COINCIDENT

CHORD = 0.0

DO 175 K=1,3

CHORD = CHORD + (X2 (K)-X1(K)) **2
CHORD =SQRT (CHORD)

|F (CHORD.GT.1.0E-8) GO TO 180
WRITE (6,3050) NI,NJ,NEL

MODEX = 1

RETURN

6. LOCAL X-AXIS VECTOR
A(1,1) = A(2,2)%A(3,3) - A(3,2)*A(2,3)
A(2,1) = A(3,2)*%A(1,3) - A(1,2)*A(3,3)
A(3,1) = A(1,2)%A(2,3) - A(2,2)*A(1,3)

7. COMPUTE THE CENTRAL ANGLE

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

DUM = O0.5%CHORD/R

Ceksk THETA = 2.0DO%DARSIN (DUM)
THETA = 2.0D0%ASIN (DUM)
GO TO 50
c

3000 FORMAT (25HOERROR#*#%% BEND ELEMENT (,14,19H) HAS ZERO DISTANCE,
1 15H BETWEEN NODE (,!4,31H) AND THE TANGENT INTERSECTION., / 1X)
3010 FORMAT (LSHOERROR*%% TANGENT LENGTHS FOR BEND ELEMENT (, |4,
1 27H) ARE NOT EQUAL TO WITHIN (LEVl.Lk, 2H)., /
2 11X,23H!I-NODE TANGENT LENGTH =,£20.8, /
3 11X,23HJ-NODE TANGENT LENGTH =,£20.8, / 1X)
3020 FORMAT (30HOERROR**% THE CENTRAL ANGLE (,F8.3,10H) FOR BEND,
1 10H ELEMENT (,1k4,18H) 1S OUT OF RANGE., / 11X,
2 38HTHETA MUST BE GT.O AND LT.180 DEGREES., / 1X)
3030 FORMAT (25HOERROR#*%* BEND ELEMENT (,14,19H) HAS ZERO DISTANCE,
1 15H BETWEEN NODE (,|4,30H) AND THE CENTER OF CURVATURE.,/ 1X)
3040 FORMAT (36HOERROR**% COMPUTED RADIUS TO NODE (,I4,10H) FOR BEND,
1 10H ELEMENT (,!4,38H) 1S DISCREPANT FROM THE INPUT RADUIS., /
2 11X, 17HRADIUS INPUT =,£20.8 /
3 11X, 17HRADIUS COMPUTED =,£20.8 / 1X)
3050 FORMAT (LLHOERRORX*% ZERO CHORD LENGTH BETWEEN NODES (, 14,
1 7H) AND (,14,19H) IN BEND ELEMENT (,I4,2H) ., / 1X)
3060 FORMAT (51HOERROR%*% TANGENT INTERSECTION POINT FOR ELEMENT ¢,

1 I4,18H) 1S ON THE CHORD., / 1X)

c
END

C
c CALLS? PINVER
c CALLED BY? PIPEK
c
c COMPUTATION OF THE ELEMENT STIFFNESS AND LOAD MATRICES FOR A
c CIRCULARLY CURVED PIPE BEND ELEMENT.
c
c
c ALFAV = SHAPE FACTOR FOR SHEAR DISTORTION
c (GT.99.99, NEGLECT)
c NOAX = CODE FOR NEGLECTING AXIAL DEFORMATIONS
c (EQ.1, NEGLECT)
c E = YOQUNG*S MODULUS
c * XNU = POISSONXS RATIO
c XKP = PRESSURE DEPENDENT FLEXIBILITY FACTOR
c AREA = SECTION AREA
c XM1 = MOMENT OF INERTIA
c T = ANGLE OF THE BEND, THETA
o ST = SIN(THETA)
o cT = COS (THETA)
o NODE = NODE NUMBER AT END J OF THE BEND
c NEL = PIPE ELEMENT NUMBER
c MODEX = EXECUTION MODE
o (EQ.1, DATA CHECK)
c F(6,6) = FLEXIBILITY MATRIX AT NODE J
c R = RADIUS OF THE BEND
c THERM = THERMAL EXPANSION COEFFICIENT
o P = |NTERNAL PIPE PRESSURE
c WALL = PIPE WALL THICKNESS

FILE:

nnnnnnnnnnnnnnnnnnnnnnnnnn

PSAP FRC A OLD DOMINION UNIVERSITY

bouT
B

OUTSIDE DIAMETER OF THE PIPE

FREE END DEFLECTIONS AT NODE J DUE TO

(1) UNIFORM LOAD IN THE X(I) DIRECTION

(2) UNIFORM LOAD IN THE Y(!) DIRECTION

(3) UNIFORM LOAD IN THE Z(!) DIRECTION

(k) UNIFORM THERMAL EXPANSION (DT=1)

(5) P, INTERNAL PRESSURE

H = FORCE TRANSFORMATION RELATING REACTIONS AT NODE |
DUE TO UNIT LOADS AT NODE J

S = LOCAL BEND ELEMENT STIFFNESS MATRIX

FEF = FIXED END FORCES (ACTING ON THE NODES) DUE TO
(1) UNIFORM LOAD IN THE X(I) DIRECTION
(2) UNIFORM LOAD IN THE Y(I) DIRECTION
(3) UNIFORM LOAD IN THE Z(I) DIRECTION
(4) UNIFORM THERMAL EXPANSION (DT=1)
(5) P, INTERNAL PRESSURE

XM = LUMPED MASS MATRIX

SA = STRESS-DISPLACEMENT TRANSFORMATION RELATING THE
12 GLOBAL COMPONENTS OF DISPLACEMENT TO THE 6
LOCAL COMPONENTS OF MEMBER LOADS LOCATED AT NODE
I, MIDPOINT OF THE ARC AND AT NODE J.

FEFC = FIXED-END FORCE CORRECTIONS TO THE MEMBER LOADS
DUE TO THE FIVE (5) TYPES OF ELEMENT LOADS

XMAS = MASS PER UNIT LENGTH OF THE SECTION

DC = ARRAY OF DIRECTION COSINES WHICH TRANSFORMS LOCAL
VECTORS TO GLOBAL VECTORS

SUBROUTINE BENDKS

COMMON /PIPEC/ALFAV,E,XNU,XKP,T,NOAX,NODE,NEL,

] MODEX,R, THERM,P,AREA, XM| ,WALL,DOUT, XMAS
COMMON /EM/ IXX(14) ,5(12,12) ,RF (12,4) ,XM(12) ,SA(18,12),
] SF(18,4) ,FEF(12,5) ,FEFC (18,5) ,F (6,6) ,B(6,6),

2 H(6,6),DC(3,3), FILL2(3606)

COMMON /ELPAR/ NPAR (14),1FILL)Y (10)

common /say/ neqq, numee, loopur,nnblock,nterms,option
common /what/ naxa(10000),irowl (10000),icolh (10000)
DIMENSION coL (6)

SET THE FACTOR FOR AXIAL DEFORMATIONS

AXIAL = 1.0
IF(NOAX.EQ.1) AXIAL = 0.0

SET THE FACTOR FOR SHEAR DEFORMATIONS (EQ.0, NEGLECT)

XKAP = ALFAV
IF (ALFAV.GT.99.99) XKAP = 0.0

SET THE FLEXIBILITY FACTORS

XKO = XKP
XK1 = XKP

COMPUTE THE MATERIAL FACTORS

FILE:

(@}

(@)

OOOOOO0OOOO0O000

o0

o0

(@}

50

PSAP FRC A OLD DOMINION UNIVERSITY

.O+XNU

COMPUTE SECTION PROPERTY CONSTANTS

RA = AXIAL*R*RE/AREA
RV = XKAP*XNU1*R*RE/AREA
RT = 0.5%XNU1%RXRE/XMI

RBO = 0.5%XKO*R*RE/XMI
RB1 = XK1*R*RE/XMI
R2 = R¥%%2

COMPUTE COMMON TRIGONOMETRIC CONSTANTS

ST =SIN(T)
CT =C0S(T)
S2T =SIN (2.0%T)
C2T =C0S (2.0%T)
T2 = T%%2

FORM THE NODE FLEXIBILITY MATRIX AT NODE J REFERENCED TO THE

LOCAL (X,Y,Z) COORDINATE SYSTEM AT NODE |.

X - DIRECTION... [IN-PLANE TANGENT TO THE BEND AT NODE | AND

DIRECTED TOWARD NODE J

Y - DIRECTION... [IN-PLANE AND DIRECTED RADIALLY

CENTER OF CURVATURE

INWARD TO THE

Z - DIRECTION... OUT OF PLANE AND ORTHOGONAL TO X AND Y

D0 50 i=1,6

DO 50 K=1,6

F(1,K) = 0.0
CONTINUE

‘AX I AL

F(1,1) = F(1,1) + 0.25%RA* (2.0%T+S2T)
F(2,2) = F(2,2) + 0.25%RA%*(2.0%T-S2T)
NOTE (COEFFICIENT CHANGE)

F(1,2) = F(1,2) + 0.50%RA% ST**2

SHEAR

F(1,1) = F(1,1) + 0.5%RV*(2.0%T-5S2T)
F(2,2) = F(2,2) + 0.5%RV*(2,0%T+S2T)
F(3,3) = F(3,3) + 2.0%RV* T

NOTE (SIGN CHANGE)

F(1,2) = F(1,2) - RVX STx%2

TORS 1 ON

F(3,3) = F(3,3) + 0.5%RT*R2% (6.0%T+S2T-8.0%ST)
Fb,4) = F(b,4) + O.5%RT* (2.0%T+S52T)

F(5,5) = F(5,5) + O.5%RT* (2.0%T-S2T)

F(3,4) = F(3,4) + RT*R * (ST-T*CT)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

F(3,5) = F(3,5) + RT*R *(2.0-2.0%CT-T*ST)
F(4,5 = F(4,5) + 0.5%RT* (1.0-C2T)

c

C BENDING

c
F(1,1) = F(1,1) + 0.25%RB1*R2% (2.0%T+* (2.0+C2T) -3.0%52T)
F(2,2) = F(2,2) + 0.25%RB1*R2% (2.0%T* (2.0-C2T)+3.0%S2T-8.0%ST)
F(3,3) = F(3,3) + 0.50%RBO*R2* (2.0%T-S27T)
F(4,4) = F(L4,4) + 0.50%RBO* (2.0%T-52T)
F(5,5) = F(5,5) + 0.50%RBO* (2.0%T+S2T)
F(6,6) = F(6,6) + RB14T
F(1,2) = F(1,2) + 0.25%RBI*R2% (1.0+3,0%C2T+2.0%T*S2T-4,0*CT)
F(1,6) = F(1,6) - RB1*R * (ST-T*CT)
F(2,6) = F(2,6) + RBI%R * (T*ST+CT-1.0)
F(3,4) = F(3,4) + RBO#*R * (ST-T*CT)
F(3,5) = F(3,5) - RBO%R *T#ST
F(L,5) = F(4,5) - 0.50%RBO* (1.0-C2T)

c
DO 60 I=1,6
DO 60 K=i,6
F(K,1) = F(1,K)

60 CONTINUE

Codst PRINT THE NODE FLEXIBILITY MATRIX

{F (NPAR(10) .LT.1) GO TO 6700

WRITE (6,4000)

WRITE (6,4010) ((F (1,K),K=1,6),1=1,6)
6700 CONTINUE
Chedkekek

c FORM THE NODE STIFFNESS MATRIX

CALL PINVER (F,6,6,NODE,NEL,MODEX)
Cx¥%%% PRINT THE NODE STIFFNESS MATRIX

IF (NPAR(10) .LT.1) GO TO 6701

WRITE (6,4020)

WRITE (6,4030) ((F(1,K),K=1,6),1=1,6)
6701 CONTINUE

C ek
c
c COMPUTE THE DEFLECTIONS/ROTATIONS (MEASURED IN THE X,Y,Z SYSTEM
c AT NODE 1) AT NODE J DUE TO UNIFORM LOADS IN EACH OF THE X,Y,Z
C DIRECTIONS (AT). THE UNIFORM LOADS ARE DIRECTION INVARIANT
C WITH POSITION ALONG THE ARC, AND NODE | IS FIXED WHILE NODE J IS
c COMPLETELY FREE.
c

DO 70 I=1,6

D0 70 K=1,3

B(I,K) = 0.0

70 CONTINUE

c
c AX 1AL
c

RA = 0.125%RA*R
B(1,1) = B(1,1) + RA%* (2.0%T2-C2T+1.0)
B(2,2) = B(2,2) + RA%* (2.0%T24+C2T-1.0)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

c NOTE (COEFFICIENT CHANGE)
B(1,2) = B8(1,2) + RA% (2.0%T-52T)
c NOTE (COEFFICIENT CHANGE)
B(2,1) = B(2,1) + RA* (2.0%T-S2T)
c
c SHEAR
c
RV = 0.25%RV*R
B(1,1) = B(1,1) + RVX (2.0%T2+C2T-1.0)
B(2,2) = B(2,2) + RV* (2.0%T2-C2T+1.0)
B(3,3) = B(3,3) + L.OXRV*T2
c NOTE (SIGN CHANGE)
B(1,2) =8(1,2) - RV* (2.0%T-52T)
c NOTE (SIGN CHANGE)
B(2,1) = B(2,1) - RVX (2.0%T-S2T)
c
c TORS I ON
c
RT = RT#*R2
B(3,3) = B(3,3) + 0.5%RT*R* (1.0+2.0%T2-4 0*T*ST-C2T)
B(L,3) = B(bL,3) + RT* (2.0-2.0%CT-T*ST)
B(5,3) = B(5,3) + RT* (T*(2.0+CT)-3.0%ST)
c
c BENDING
c
RBO = RBO*R2
RB1 = RB1*R2
B(1,1) = B(1,1) + 0.125%RB1#R% (7.0+2.0%T2+9,04C2T+4 .0*T#S2T
1 -16.0%CT)
B(2,2) = B(2,2) + 0.125%RB1%R* (1.0+2.0%T2-9.0%C2T-4.0%T*S2T
1 +8.0% (CT-T*ST))
B(3,3) =8(3,3) + 0.500%RBO%R%* (3.0+C2T-4 . 0*CT)
B(1,2) = 8(1,2) + 0.125%RB1%R% (9.0%S2T-4 .0%T* (C2T+2.0*%CT) -6.0%T)
B(2,1) = B(2,1) + 0.125%RB1#*R% (9.0%S2T-4 . OXT*C2T-2L.0%ST+10.0%T)
B(k,3) = B(L,3) + RBO% (2.0-2.0%CT-T#ST)
B(5,3) = B(5,3) - RBOX* (ST-T*CT)
B(6,1) = B(6,1) - RB1% (2.0-2.0%CT-T*ST)
B(6,2) = B(6,2) + RB1* (2.0%ST-T-T*CT)
C ,
c COMPUTE THE FREE NODE DEFLECTIONS AT END J DUE TO A UNIFORM
C THERMAL EXPANSION
c
po 80 I=1,6
B(I,4) =.0.0
80 CONTINUE
c
DUM = R*THERM
B(1,4) = DUMAST
B(2,4) = DUMX(1.0-CT)
c
c COMPUTE THE FREE NODE DEFLECTIONS AT END J DUE TO PRESSURE
c
D0 90 !=1,6
B(I,5) = 0.0

90 CONTINUE

FILE:

oNeNeNel

(el el

o

o

92

94

96

C K dedsk

6702

Chdekek

s eNeNeNe]

100

PSAP FRC A OLD DOMIN!ON UNIVERSITY

COMPUTE THE ANGLE CHANGE AND END DISPLACEMENTS AT THE FREE END
OF THE BEND DUE TO INTERNAL PRESSURE, P.

RM = (DOUT-WALL) *0.5

KK = 1

GO TO (92,94) ,KK

MEL REPORT 10-66, EQUATION (3-29).

CONT INUE
DUM = 3.14159265%RM#k*L*PXT

DUM = O.5%DUMXRE/XMI

DU2 = RM/R

BTA = DUM* (2.0-2.0%XNU + (3.0+1.5%XNU) *DU2%%*2)
GO TO 96

C. S. PARKER, EQUATION (10), 2-28-69.

CONT INUE
DU2 = R/RM

DUM = PXRM*Q.5%RE/WALL

DU3 = 1.0 + DUM* (1.0-XNU* (2.0%DU2-1.0) / (DU2-1.0))
BTA = DU3/ (1.0 + DUM*(2.0-XNU))

BTA = T#(1.0-BTA)

CONT INUE

DUM = R/T*BTA

B(1,5) = DUMX (ST-T*CT)
B(2,5) = DUM*(1.0-CT-T*ST)
B(6,5) =-BTA

AXIAL GROWTH DUE TO PRESSURE. MEL REPORT 10-66, EQUATION (3-28).

DUM = 0.5% P%x RMX RE* (1.0-2.0%XNU)* R/ WALL
B(1,5) = B(1,5) + DUM* ST

B(2,5) = B(2,5) + DUM* (1.0-CT)

PRINT THE FREE END DEFLECTIONS

IF(NPAR(10) .LT.1) GO TO 6702

WRITE (6,4050)

WRITE (6,4060) ((B(I,K),K=1,5),1=1,6)
CONTINUE

SET UP THE FORCE TRANSFORMATION RELATING REACTIONS AT NODE |
ACTING ON THE MEMBER END DUE TO UNIT LOADS APPLIED TO THE MEMBER
END AT NODE J.

DO 100 I=1,6
DO 100 K=1,6
H(I,K) = 0.0
CONT INUE

DO 105 K=1,6
H(K,K) =-1.0

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

105 CONTINUE

H(4,3) =-R%(1.0-CT)
H(5,3) = R%x ST
H(6']) =-H ("*13)
H(6,2) =-H(5,3)

FORM THE UPPER TRIANGULAR PORTION OF THE LOCAL ELEMENT STIFFNESS
MATRIX FOR THE BEND

OO0

DO 110 K=1,6

D0 110 1=K,6

S(K+6,146) = F(K,I)
110 CONTINUE

DO 130 IR=1,6

DO 130 IC=1,6

S(IR,1C+6) = 0.0

DO 120 IN=1,6

S(IR,1C+6) = S(IR,IC+6) + HOR,IN)* F(IN,IC)
120 CONTINUE
130 CONTINUE

D0 150 IR=1,6

D0 150 IC=IR,6

S(IR,I1C) = 0.0

DO 140 IN=1,6

S(IR,iC) = S(IR,IC) + S(IR, IN+6)* H(IC,IN)
140 CONTINUE
150 CONTINUE

oo

REFLECT FOR SYMMETRY

DO 160 iI=1,12
DO 160 K=1,12
S(K’|) = S(lyK)
160 CONTINUE
Ck%%% PRINT THE BEND LOCAL STIFFNESS MATRIX
IF (NPAR(10) .LT.1) GO TO 6703
WRITE (6,4500) '
WRITE (6,4510) ((S(1,J),d=1,6),1=1,12)
WRITE (6,4510) ((S(1,J),J=7,12),1=1,12)
6703 CONTINUE

Chkdek

c

C COMPUTE THE RESTRAINED NODE FORCES ACTING ON THE NODES OF THE
C BEND DUE TO THE MEMBER LOADINGS

c

Do 180 I=1,5

DO 180 J=1,12

FEF (J,1) = 0.0

DO 170 K=1,6

FEF(J,1) = FEF(J,1) = S(J,K+6) % B(K,!)
170 CONTINUE
180 CONTINUE

FILE:

s EalNeNel

Cotsekk

6704

Coesksksk

sEeNeNesNeNeNe]

(@)

s NeNeNeNel

200

210

215
220

PSAP FRC A OLD DOMINION UNIVERSITY

FOR THE DISTRIBUTED LOADS SUPERIMPOSE THE CANTILEVER REACTIONS
ACTING ON THE ELEMENT AT NODE 1I.

FEF(1,1) = FEF(1,1) - R*T
FEF (6,1) = FEF(6,1) + R2%(T-ST)

FEF(2,2) = FEF(2,2) - R*T

FEF (6,2) = FEF(6,2) - R2%(1.0-CT)
FEF(3,3) = FEF(3,3) - R*T

FEF (L,3) = FEF(4,3) - R2*(T-ST)
FEF(5,3) = FEF(5,3) + R2%(1.0-CT)

PRINT THE FIXED END QUANTITIES

IF (NPAR(10) .LT.1) GO TO 6704

WRITE (6,4600)

WRITE (6,4610) ((FEF(1,J),J=1,5),1=1,12)
CONTINUE

FORM THE LUMPED MASS MATRIX

DUM = O.5%R*T#*XMAS

D0 200 K=1,3
XM (K) = DUM
XM (K+6) = DUM
XM (K+3) = 0.0
XM (K+9) = 0.0
CONTINUE

COMPUTE THE FIXED-NODE CORRECTIONS TO THE MEMBER LOADS RESULTING
FROM ELEMENT LOADINGS. FORCES ACT ON THE SEGMENT BETWEEN THE
POINT WHERE EVALUATED AND NODE .

1. AT NODE | (ACTING ON NODE 1)

Do 210 I=1,5

DO 210 K=1,6
FEFC(K,1) = -FEF(K,I)
CONTINUE

2. AT NODE J (ROTATE IN-PLANE FROCES AN AMOUNT THETA)

D0 220 I=1,5

DO 215 K=1,4,3

FEFC(K+12,1) = CT* FEF (K+6,1) + ST* FEF (K+7,1)
FEFC(K+13,1) = -ST* FEF (K+6,1) + CT* FEF (K+7,1)
FEFC(K+1L,1) = FEF (K+8, 1)

CONTINUE

CONTINUE

3. AT THE MIDPOINT OF THE ARC BETWEEN NODES | AND J.

A. TRANSFER FORCES AT NODE J TO THE MIDPOINT AND ROTATE
AN AMOUNT THETA/2

FILE:

230

OO0 Mm

Cokdek

6705
C ek

OOOO0O0

PSAP FRC A OLD DOMINION UNIVERSITY

S12T =SIN(0.5%T)
C12T =CO0S (0.5%T)

DX = R*(ST-S127)
DY = R%(C12T7-CT)
00 230 1=1,5

XM10 = FEF (10,1) + FEF(9,1)* DY
XM11 = FEF(11,1) - FEF(9,1)* DX

FEFC(7,1) = CI12T* FEF(7,1) + S12T* FEF (8,1)

FEFC(8,1) = -S12T* FEF(7,1) + C12T* FEF(8,1)

FEFC(9,1) = FEF(9,1)

FEFC(10,1) = C12T* XM10 + S12T* XM11

FEFC(11,1) = -S12T* XMIO + C12T* XMIi1

FEFC(12,1) = FEF(12,1) - FEF(7,1)*% DY + FEF(8,1)* DX

B. FOR THE DISTRIBUTED LOADS SUPERIMPOSE THE RESULTANT
OF THE APPLIED LOADING TRANSFERRED TO THE MIDPOINT OF
THE ARC AND ROTATE AN AMOUNT THETA/2 (IN-PLANE)

DDX
Doy
DUM

Rk (2.0%(C12T-CT) /T - S127T)
R%(2.0%(S12T-ST) /T + C12T)
RXT*0.5

FEFC(7,1)
FEFC(8,1)
FEFC(12,1)

FEFC(7,1) + C12T* DUM
FEFC(8,1) - S12T* DUM
FEFC(12,1) - DDY % DUM

FEFC(7,2)
FEFC(8,2)
FEFC(12,2)

FEFC(7,2) + S12T* DUM
FEFC(8,2) + C12T* DUM
FEFC(12,2) + DDX * DUM

FEFC(9,3) = FEFC{ 9,3) + DUM

XM10 = DDY* DUM

XM11 = -DDX* DUM

FEFC(10,3) = FEFC(10,3) + C12T* XM10 + S12T% XM1l
FEFC(11,3) = FEFC(11,3) - S12T* XMI10 + C12T* XM11
PRINT THE FIXED-END CORRECTIONS

{F (NPAR (10) .LT.1) GO TO 6705

WRITE (6,4650)

WRITE (6,4660) ((FEFC(1,J),J=1,5),1=1,18)
CONTINUE

FORM THE TRANSFORMATION RELATING GLOBAL DISPLACEMENTS AND MEMBER
FORCES AT NODE 1, MIDPOINT AND NODE J.

1. STRESS RESULTANTS AT NODE |

D0 260 Ki=1,10,3
NRS = K1-1

DO 260 K2=1,10,3
NCS = K2-1

DO 250 IR=1,3

NR = NRS+IR

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

00 250 1C=1,3

NC = NCS+IC

SA(NR,NC) = 0.0

DO 240 IN=1,3

N = NCS+IN

SA(NR,NC) = SA(NR,NC) - S(NR,N)* DC(IC,IN)
240 CONTINUE
250 CONTINUE
260 CONTINUE

o

2. STRESS RESULTANTS AT NODE J

H(1,1)
H(1,2)
H(2,1)
H{2,2)
H(3,3)

nonowonow
]

e N N e

—

(@]

DO 290 K1=7,10,3
NRS = K1-1
DO 280 IR=1,3
NR = NRS+IR
DO 280 IC=1,12
SA(NR+6,1C) = 0.0
DO 270 IN=1,3
N = NRS+IN
SA(NR+6,1C) = SA(NR+6,1C) - H{iIR,IN)* SA(N,IC)
270 CONTINUE
2B0 CONTINUE
290 CONTINUE

o0

3. STRESS RESULTANTS AT THE MIDPOINT OF THE ARC

H(1,1) = c127T
H(1,2) = S127
H{2,1) = -S12T
H(2,2) = C12T
H(3,3) = 1.0
DO 300 1=1,3

D0 300 K=1,3

300 H(1+3,K+3) = H(I,K)

H(k,3) = DY* CI12T - DX* S12T
H(5,3) = -DY* S12T - DX* Cl12T
H(6,1) = -DY
H(6,2) = DX

DO 320 IC=1,12
DO 310 N=1,6
310 COL(N) = SA(N+6,I1C)
DO 320 IR=1,6
SA(IR+6,IC) = 0.0
D0 315 IN=1,6
SA(IR+6,1C) = SA(IR+6,1C) - H{IR,IN)* COL (IN)
315 CONTINUE
320 CONTINUE

FILE:

Chkkxk

6706
Chhkk

4000
4010
4020
4030
4050
L4060
4500
4510
L4600
4610
4650
L660
4700
4710

OO0

ckNk

500

PSAP

FRC A OLD DOMINION UNIVERSITY

PRINT THE STRESS DISPLACEMENT TRANSFORMATION
IF (NPAR(10) .LT.1) GO TO 6706

WRITE (6,4700)

WRITE (6,4710) ((SA(1,J),Jd=1, 6),1=1,18)
WRITE (6,4710) ((SA(I,J),d=7,12),1=1,18)
CONTINUE

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

RETURN
END

(/// 24H NODE FLEXIBILITY MATRIX, // 1X)

(1X / (6€20.8))

(/// 22H NODE STIFFNESS MATRIX, // 1X)

(1Xx / (6£E20.8))

(/// 42H FREE NODE DISPLACEMENTS (5 MEMBER LOADS), // 1X)
(1x / (5E20.8))

(23H1LOCAL STIFFNESS MATRIX, // 1X)

(// (/6E15.6))

(// 17HOFIXED END FORCES, // 1X)

(5€20.8)

(// L3HOSTRESS CORRECTIONS DUE TO FIXED END FORCES, // 1X)
(5£20.8)

(//35HOSTRESS-DISPLACEMENT TRANSFORMATION, / 1X)
(/// (6£20.8))

SUBROUTINE BOUND

CALLS?
CALLED

COMMON

CLAMP,STRSC
BY? ELTYPE

/one/ A (1)

COMMON A (7100)

COMMON
COMMON
COMMON
common
common

/ELPAR/ NPAR (14) ,NUMNP,MBAND,NELTYP,N1,N2,N3,N4,N5,MTOT,NEQ
/JUNK/ LT,LH.L,IPAD,SIG(ZO),IFILL(386)

JEXTRA/ MODEX,NT8,NT10OSV,NT10, IFILL2{(12)

/say/ neqq,numee, loopur,nnblock,nterms,option

/what/ naxa (10000) ,irow! (10000) ,icolh (10000)

IF (NPAR(1) .EQ.0) GO TO 500

CALL CLAMP (NPAR(2),A(N1),A(N2),A(N3),A(N4) ,NUMNP,6MBAND)

RETURN

WRITE (6,2002)
NUME=NPAR (2)
numee=nume
neqq=neq

D0 800

MM=1,NUME

CALL STRSC (A(N1),A(N3),NEQ,O)
WRITE (6,2001)

DO 800 L=LT,LH

CALL STRSC (A(N1),A(N3),NEQ,1)
WRITE (6,3002) MM,L, (SI1G(I),1=1,2)
C%%%x STRESS PORTHOLE

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

IF (N1OSV.EQ.1)
*WRITE (NT10) MM,L,SIG(1),S51G(2)
800 CONTINUE
RETURN
o
2001 FORMAT (/)
2002 FORMAT (LBHIB O UNDARY ELEMENT FORCES/,
] 14lH M O M ENT S, // 8H ELEMENT, 3X,4HLOAD, 14X, 5HFORCE,
2 9X,6HMOMENT, / 8H NUMBER, 3X,L4HCASE, // 1X)
3002 FORMAT (18,17,4X,2E15.5)
END
SUBROUTINE BRICK8 (S,STR,NBRKB,NMAT,NLD,!D,X,Y,Z,T,EE,ENU,RHO,
ALPT,KTYPE,PR,YREF,NFACE,NUMNP)

CALLS? DERIV,LOAD,LOSTR,CALBAN
CALLED BY? THREED

STIFFNESS SUBROUTINE FOR 24 D.F. ISOPARAMETRIC HEXAHEDRON
LINEAR ELASTIC ISOTROPIC MATERIAL
'"NINTXNINT*NINT' GAUSSIAN INTEGRATION RULE USED (NINT=1,2,3,4)

OO0 O0O0O0OO0

DIMENSION KTYPE (1) ,PR(1),YREF (1) ,NFACE (1)

DIMENSION T (1)

DIMENSION X (1),Y(1),Z(1),1D(NUMNP,6)

COMMON/EM/LM (24) ,ND,NS, SS(24,24) ,RF (24,4) ,XM(24) ,SA(12,24),

F(12,4), IFILL2 (3048)

EQUIVALENCE (IS1,SF(4)) , (1S2,SF(6))

DIMENSION EE (1) ,ENU(1) ,RHO (1) ,ALPT (1)

COMMON /GASS/ XK (4,4) ,WGT (4, 4) , IPERM(3)

COMMON /JUNK/ E1,E2,E3,DET,MLD (4) ,KLD (4) ,MULT (L) ,NP (8), INP (8),
A(3,3),P(3,11),B(3,3),Xx(8,3),Q(11),DL(8),
TT (24) , XLF (L) ,YLF (4) ,ZLF (4) ,TLF (k) ,PLF (&),
REFT, INEL, ININT, IMAT, | INC,TTEMP,NEL,ML,NINT,MAT,

INC, IPAD,TAG, TEMP,SKIP,!,J,K,L,FAC,CC1,CC2,CC3,CC4,

G,DEN,FACT,GT,GG,C1,C2,C3,C,K1,K2, IFILLI (6L)

COMMON /ELPAR/ NPAR (14) ,NUMN ,MBAND,NELTYP,N1,N2,N3,NL,N5, MTOT,NEQ

COMMON /EXTRA/ MODEX, NT8 IFILL3(lh)

common /say/ neqq,numee, loopur,nnblock,nterms,option
common /what/ naxa (10000),irow! (10000),icolh (10000)
DIMENSION S(33,33),STR(12,33)

DIMENSION E(3,3)

DIMENSION 1S5(2),!15P(2)

DATA STAR/'%'/,BLNK/' '/

DIMENSION STPTS(7,3)

DATA STPTS / 0. , 1. ,-1. , O.
0., 0., 0., 1.

0. ,0.,0.,0

1
o -~ 0O
— O O
- 0O O

N ow

XK(1,1)=0.000
XK (2,1)=0.0D0
XK (3,1)=0.0D0
XK (4,1)=0.0D0
XK (1,2)=-.5773502691896D0
XK (2,2)==XK(1,2)

XK (3,2)=0.0D0

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

XK (4, 2)=0.000

XK (1,3)=-.7745966692L415D0
XK (2, 3)=0.0D0

XK (3,3) =-XK(1,3)

XK (4, 3)=0.000

XK (1,4)=-.8611363115941D0
XK {(2,4)=-.3399810435849D0
XK (3,b4)=-XK(2,4)

XK (L4, 4)=-XK (1,4)

WGT (1,1)=2.0D0

WGT (2,1)=0.0D0

WGT (3, 1) =0.0D0

WGT (4, 1)=0.0DO

WGT (1,2)=1.000

WGT (2,2)=1.0D0

WGT (3,2)=0.000

WGT (4,2) =0.0D0

WGT (1, 3) =.55555555555556D0
WGT (2,3)=.8888888888889D0
WGT (3, 3) =.555555555555600
WGT (4, 3)=0.0D0

WGT (1,4)=.3478548451375D0
WGT (2,4)=.6521451548625D0
WGT (3,4) =WGT (2,4)

WGT (L, L) =WGT (1, 4)

IPERM (1) =2
IPERM (2) =3
IPERM (3) =1
c
c
c
C ZERO EM
C
WRITE (6,3000) NBRK8,NMAT,NLD
DO 9 I=1,1058
9 LM(I)=0
c
c MATERIAL PROPERTIES
C

WRITE (6,1300)
DO 1 I=1,NMAT '
READ (5,1001) N,EE(N) ,ENU(N) ,RHO(N) ,ALPT (N)
1 WRITE (6,2001) N,EE (N),ENU(N) ,RHO (N) ,ALPT (N)
Ck%%x DATA PORTHOLE SAVE
IF (MODEX.EQ.1)
*WRITE (NT8) (EE(1),ENU(I),RHO(1),ALPT (1), 1=1,NMAT)

o ELEMENT DISTRIBUTED LOAD CARDS

IF (NLD) 23,23,15
15 WRITE (6,1302)
DO 16 I=1,NLD
READ (5,1002) N,KTYPE (N),PR(N),YREF (N) ,NFACE (N)
16 WRITE (6,2002) N,KTYPE (N),PR(N),YREF (N) ,NFACE (N)
Cx*% DATA PORTHOLE SAVE

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

IF (MODEX.EQ.1)
*WRITE (NT8) (KTYPE(N),PR{N),YREF (N) ,NFACE (N) ,N=1,NLD)

23 READ (5,1003) GRAV,PLF,TLF,XLF,YLF,ZLF
WRITE (6,2003) GRAV,PLF,TLF,XLF,YLF,ZLF
IF (GRAV.EQ.0.) GRAV=1.E+10
Ckx% DATA PORTHOLE SAVE
IF (MODEX.EQ.1)
*WRITE (NT8) GRAV,PLF,TLF,XLF,YLF,ZLF

WRITE (6,1301)
NEL=0
30 READ (5,1000) INEL,INP, ININT, IMAT, I INC,MLD, ISP, TTEMP
{F(IINC.EQ.O) IINC=1
{F (IMAT.EQ.O) IMAT=1
LO NEL=NEL+)
ML=INEL-NEL
IF (ML) 50,55,60
50 WRITE (6,4003) INEL
STOP
55 DO 56 1=1,8
56 NP (1)=INP(I)
D0 39 I=1,4
39 MULT (1) =1
NINT=ININT
MAT=1|MAT
INC=1INC
TAG=STAR
REFT=TTEMP
1IS()=1SP(1)
1S(2)=ISP(2)
SK1P=99999.
IF(NINT) 33,33,57
33 NINT=1ABS (NINT)
SKIP=1.
IF(NINT.EQ.0) SKIP=0.
57 CONTINUE
D0 59 I=1,4
KLD (1) =1ABS (MLD (1))
IF(MLD (1)) 58,58,59
58 MULT (1) =0
59 CONTINUE
GO TO 62

60 DO 61 I=1,8

61 NP (1)=NP (I)+INC
TAG=BLNK
DO 64 I=1,4

64 KLD (1) =KLD (1) *MULT (I)

62 |F (MODEX.EQ.1) GO TO 540
TEMP = 0.0
D0 10 I1=1,8
K=NP (1)
TEMP=TEMP+T (K)

FILE:

o0

(@]

10

63

100
110

120

310

PSAP FRC A OLD DOMINION UNIVERSITY

XX (1,1)=X(K)

XX (1,2)=Y(K)

XX (1,3)=Z(K)

TEMP=TEMP*0.125

K=MAT

FAC = EE(K)/((1.-2.%ENU(K)) % (1.+ENU(K)))
FACT=FACXALPT (K) * (TEMP-REFT) * (1.+ENU(K))
IF(SKIP) 70,70,63

SKIP=SKIP-1.

CCl=1.-ENU(K)

CC2=ENU (K)

CC3=.5-ENU (K)

DO 100 1=1,33
DO 100 J=1,33
S(1,J)=0.0D0
D0 110 I1=1,24
TT(1)=0.

Do 120 1=1,8
oL (1) =0.

VOLUME = 0.0

LOOP OVER NINT#*%3 INTEGRATION POINTS

DO 300 LX = 1,NINT
E1=XK (LX,NINT)
DO 300 LY = 1,NINT
E2=XK (LY,NINT)
DO 300 LZ = 1,NINT
E3=XK (LZ,NINT)

CALL DERIV(1,SA)

GT= WGT(L!,NINT)*WGT(LY,NINT)*WGT(LZ,NINT)*DET
VOLUME = VOLUME + GT
GG=GT*RHO (MAT)
G=GT*FAC

C1=G*CC1

C2=G#*CC2

C3=G*CC3

L=0

DO 310 I=1,8

oL (1) =DL (1) + GG*Q(I)

DO 310 K=1,3

L=L+1

TT(L) =TT (L) + GT*SA(I,K)

ADD CONTRIBUTION TO STIFFNESS MATRIX

D0 300 I=1,1]

K3 = 3|
K2 = K3 - 1
K1 = K2 - 1

Ut=SA(l1,1)

FILE:

(@}

300

305

PSAP FRC A OLD DOMINION UNIVERSITY

VI=SA(l,2)
Wi=SA(!,3)
DO 300 J=1,1]
L3 = 3%y

L2 = L3 - 1
Ll = L2 - 1
UJ=SA(J,1)
VJ=SA(J,2)
WJ=SA (J, 3)
UU=U1*uJ
VV=V | %V
WW=W | %W J
Uv=U1%Vvy
VU=V | *yJ
UW=U| *WJ
WU=W|*UJ
VW=V | W)
WV=W | %V
S(K1,L1)
S(K2,L2)
S(K3,L3)
S(K1,L2)
S(K1,L3)
S(K2,L3)
IF (1.EQ.
S{K2,L1)
S(K3,L1)
S (K3,L2)
CONT INUE

S(K1,L1)
S (K2,L2)
S (K3,L3)
S(K1,L2)
S(K1,L3)
S(K2,L3)
GO TO 300
S(K2,L1) + C2%VU + C3%UV
S(K3,L1) + C2%WU + C3*UW
S(K3,L2) + C2%WV + C3*vwW

C1*uu
Cixvy
C1xWwW
C2xyv
C2*uUw
C2%xVW

C3% (VV+WW)
C 3% (WwW+UU)
C3% (UU+VV)
C3#VU
C3*WU
C3%WV

N
+ 4+ 4+ + 4+
+ 4+ ++ 4+ 4+

[
~——

FORM STRAIN MATRIX

NSS=2
IF(15(2) .EQ.0) NSS=1
DO 305 i=1,12

D0 305 J=1,33
STR(1,J)=0.

DO 405 L=1,NSS
LL=1S (L) +1
E1=STPTS (LL, 1)
E2=STPTS(LL,2)
E3=STPTS(LL,3)

CALL DERIV(2,SA)

L3=6%L-6

DO LO2 K=1,11

K 3=3%K

K2=K3-1

K1=K2-1

STR(L3+1,K1) = SA(K,1)
STR(L3+2,K2) = SA(K,2)
STR(L3+3,K3) = SA(K,3)
STR(L3+k4,K1) = SA(K,2)
STR(L3+k4,K2) = SA(K,1)
STR(L3+5,K2) = SA(K,3)
STR(L3+5,K3) = SA(K,2)

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

STR (L3+6,K1)
402 STR(L3+6,K3)
LO5 CONTINUE

SA (K, 3)
SA(K,1)

NS=6%NSS
c
c STATIC CONDENSATION
o
DO 710 M=1,9
MN=3L4-M
MO=MN-1
C STIFFNESS MATRIX - S

SP=S (MN, MN)
DO 650 I=1,M0

650 S (MN, 1) =S (I,MN)/SP
DO 700 K=1,M0

SP=S (MN, K)
D0 700 J=1,K
700 S (J,K)=S(J,K) - SP*S(J,MN)
C DERIVATIVE MATRIX - STR

DO 710 J=1,NS

SP=STR (J, MN)

IF(SP.EQ.0.) GO TO 710

DO 705 K=1,M0
705 STR(J,K)=STR(J,K) - SP*S(MN,K)
710 CONT!INUE

DO 760 I=1,2h4

DO 760 J=1,24

$5(1,9)=s(1,J)
760 SS(J,1)=85(1,J)

STRAIN TO STRESS MATRIX

(@]

E(1,1)=CCI1*FAC
E(2,2)=E(1,1)
E(3,3)=€(1,1)
E(1,2)=CC2%FAC
E(1,3)=E£(1,2)
E(2,3)=E(1,2)
E(2,1)=E(1,2)
E(3,1)=E(1,2)
E(3,2)=E(1,2)

DO 900 1=1,NSS
| I=]%6-6
DO 850 J=1,3
DO 850 K=1,24
SP=0.
D0 84O L=1,3
84O SP = SP + E(J,L)*STR (I 1+L,K)
SA (I 1+J,K)=SP
JJd=1 1+3+J
850 SA(JJ,K)=CC3*FAC*STR (JJ,K)
C
c

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

00 860 J=1,3

Jd=J+3

DO 860 K=1,4

SF (114+J,K)=-FACT*®TLF (K)
860 SF(l1+JJ,K)=0.

o
IF (1S(1).LE.O) GO TO 900
LL=1S (1) +1
E1=STPTS (LL, 1)
E2=STPTS(LL,2)

E3=STPTS (LL,3)
CALL DERIV (L,SA)
CALL LOSTR (IS,A,B,SA,SF,1)

o

900 CONTINUE

o

70 CONTINUE

c

c DISTRIBUTED LOAD

c

DO 410 J=1,24
DO 410 1=1,4
L10 RF (J,1)=0.
CALL LOAD (KTYPE,PR,YREF,NFACE)

c
c SELF WQT.
c
DO 460 |1=1,8
K=3%1] |
J=K-1
l=J-1
DO L6O L=1,4
RF (4,L) = RF(I,L)*PLF (L) + DL (I1)*XLF (L)
RF (J,L) = RF (J,L) *PLF (L) + DL (I1)*YLF (L)
460 RF (K,L) = RF (K,L)*PLF (L) + DL (11)*ZLF (L)
C
C THERMAL LOADS
c
DO 470 i=1,24
GT=TT (1) *FACT
DO 470 J=1,4
470 RF (1,J)=RF (1,J) + GT*TLF (J)
C
C MASS ARRAY
c
L=0
DUM=VOLUME *RHO (MAT) *. 125/GRAV
DO 465 1=1,8
DO 465 J=1,3
L=L+1
L65 XM(L) = DUM
c
540 tJ =0
D0 550 1=1,8

I'1=NP (1)

FILE:

550

1
560

PSAP FRC A OLD DOMINION UNIVERSITY

D0 550 J=1,3
[J=1J+1
LM(1J)=ID(11,Jd)
ND=2k

1S1=15(1)

152=15(2)

NDM=2L

CALL CALBAN (MBAND,NDIF,LM,XM,SS,RF,ND,NDM,NS)

|F (MODEX.EQ.1) GO TO 560

WRITE (1) ND,NS,(LM(I).I=l,ND).((SA(I,J).|=1,NS),J=1,ND),
((SF(1,d),1=1,NS) ,J=1,14)

IF (MODEX.EQ.1)

*WRITE (NT8) NEL,NP,NINT,MAT,KLD,REFT,IS

590

600

1000
1001
1002
1003
2000
2001
2002
2003

WRITE (6,2000) NEL,NP,NINT,MAT,TAG,KLD,REFT,IS,NDIF
CHECK |F LAST ELEMENT

i F (NBRK8-NEL) 50,600,590
IF (ML) 30,30,40

RETURN

FORMAT (1215,412,211,F10.2)

FORMAT (15,4F10.0)

FORMAT (215,2F10.2,15)

FORMAT (F10.2/ (4F10.2))
FORMAT(I6,1X,8I5,I9,I12,8X,A1.3X,h|5,F9.1,5X,2I3,I8)
FORMAT (1X,15,4E15.4)

FORMAT (15,19,2F13.3,112)

FORMAT (/////

. 35H ACCELERATION DUE TO GRAVITY = F10.2////
. 38H LOAD FACTORS FOR 4 ELEMENT LOAD CASES //

. 46X 17HELEMENT LOAD CASE /

. 36X LHA 9X THB 9X 1HC 9X 1HD /

. 30H PRESSURE LOAD FACTORS . . LF10.3/

. 30H THERMAL LOAD FACTORS . . LF10.3//

. 30H PERCENT GRAVITY IN +X DIRN. LF10.3/

. 30H PERCENT GRAVITY IN +Y DIRN. 4F10.3/

1300

30H PERCENT GRAVITY IN +Z DIRN. 4LF10.3/)
FORMAT (9HOMATERIAL 10X 1HE 12X 2HNU 10X 3HRHO 11X JHALPHA-T /

. 8H NUMBER /)

1301

FORMAT (30H1....8 NODE SOLID ELEMENT DATA /17

. 8H ELEMENT 10X 15HCONNECTED NODES 17X ,'28HINTEGRATION MATERIALI
.NPUT', 7X 13HELEMENT LOADS 5X 7HELEMENT ,5X%,6HSTRESS /

. BH NUMBER 3X,36H1 2 3 L 5 6 7 8 6X,5HORDER,
. 7X,3HNO. 6X 3HTAG 7X 16H] 2 3 4L LX GHTEMP. ,6X,6HPOINTS
.,5X,4HBAND /)

1302

FORMAT (/////26H ELEMENT DISTRIBUTED LOADS //

. 52H NUMBER KTYPE PR YREF FACE)

3000

FORMAT (31H1...... 8 - NODE SOLID ELEMENTS ///

. 24H NUMBER OF ELEMENTS.... ,15 //
. 24H NUMBER OF MATERIALS... ,15 //

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

. 24H NUMBER OF LOAD TYPES.. ,15 ///)
LOO3 FORMAT (36HOELEMENT CARD ERROR, ELEMENT NUMBER= 16)

LOOL FORMAT ('ONUMBER OF DISPLACEMENTS PER ELEMENT (ND) =',13,/,
] '"ONUMBER OF STRESSES PER ELEMENT (NS) =',13,/,
2 '"OELEMENT STRESS-DISPL MATRIX?')

4005 FORMAT (/, (1H ,1P10E13.4))
LOO6 FORMAT ('OELEMENT FIXED-NODE STRESSES?',/, (1H ,1PLEI3.4))

LOO7 FORMAT ('ELEMENT', 13, ND=',13," NS=',13)
4008 FORMAT ((1P8E10.3))
C
END
SUBROUTINE CLAMP (NUMEL, ID,X,Y,Z,NUMNP, MBAND)
C
C CALLS? CALBAN
C CALLED BY? BOUND
C
COMMON/EM/LM(Z&),ND,NS,S(Zh,Zh),P(zh.h),XM(ZA),SA(]Z,Z&).TT(IZ,A),
1 [FILLY (3048)
DIMENSION X (1),Y(1),Z (1), 1D (NUMNP,1)
COMMON / JUNK / R(6) ,RM (L) ,iFiLL2(410)
COMMON /EXTRA/ MODEX,NT8,1FILL3 (14)
common /say/ neqq, numee, loopur,nnblock,nterms,option
common /what/ naxa(10000), irowl (10000),icolh (10000)
o
WRITE (6,2000) NUMEL
o
NS=2
ND=6
C

READ (5,1005) RM

WRITE (6,2005) RM

C#%% DATA PORTHOLE SAVE
IF (MODEX.EQ.1)
*WRITE (NT8) RM

(@}

INITIALIZATION

DO 30 NI=1,ND
XM(NI) = 0.0
DO 20 NJ=1,ND
20 S(NI,NJ)= 0.0
30 CONTINUE
DO 50 NK=1,NS
DO 4O NL=1,ND
LO SA(NK,NL) = 0.0
DO 50 Ni=1,4
TT(NK,NI) = 0.0
50 CONTINUE\

NE=0

WRITE (6,2007)
210 KG=0

MARK=Q

200 READ (5,1000) NP,NI,NJ,NK,NL,KD,KR,KN,SD,SR,TRACE

F

[}

o0

c

ILE: PSAP FRC A OLD DOMINION UNIVERSITY

IF (TRACE.EQ.0.) TRACE=1.0E+10
IF (KG.GT.0) GO TO 550

COMPUTE THE DIRECTION COSINES OF THE ELEMENT*S AXIS

KG=KN
IF (MODEX.EQ.1) GO TO 530
IF(NJ.EQ.O) GO TO 250
X1=X (NJ) =X (N1)
Yi=Y (NJ) =Y (NI)
Z1=Z (NJ) -Z (NI)
X2=X (NL) =X (NK)
Y2=Y (NL) =Y (NK)
Z2=7 (NL) -Z (NK)
TI1=Y1%Z22-Y2*Z1
T2=Z1%X2-Z2%X]
T3=X1%Y2-X2%Y1
GO TO 260

250 T1=X(NI)-X (NP)
T2=Y (N1) -Y (NP)
T3=Z(N1)-Z (NP)

260 XL=TI1%*T1+T2*T2+T3%*T3
XL=SQRT (XL)
|F(XL.GT.1.0E-6) GO TO 270
WRITE (6,3000)

3000 FORMAT (32HO%#*% ERROR ZERO ELEMENT LENGTH, / 1X)
sTOP

270 CONTINUE
Ti=T1/XL
T2=T2/XL
T3=T3/XL

DISPLACEMENT PRESCRIPTION

IF (KD.EQ.0) GO TO 300
SA(1,1) =T1*TRACE
SA (1,2) =T2%TRACE
SA (1,3) =T3*TRACE
S (1,1)=T1*T1*TRACE
S(1,2) =T1*T2*TRACE
S(1,3)=T1*T3*%TRACE
S (2,2) =T2*T2*TRACE
S (2,3) =T2*T3*TRACE
S(3,3) =T3*T3*TRACE
PP=TRACE*SD
R(1)=T1%PP
R (2) =T2%PP
R (3) =T3*PP
GO TO 350

300 DO 310 I1=1,3
R(I1) = 0.0
SA(1,1) = 0.0
DO 310 J=1,3

310 S(1,J) = 0.0

FILE: PSAP FRC A OLD DOMINION UNIVERSITY

(@]

ROTATION PRESCRIPTION

350 IF (KR.EQ.0) GO TO 400
SA (2,5) =T2*TRACE
SA (2,4) =T1%XTRACE
SA(2,6) =T3*TRACE
S(L,L)=TI*T1*TRACE
S(4,5) =TI*T2*TRACE
S(4,6) =T1*T3*TRACE
S(5,5) =T2*T2*TRACE
S (5,6) =T2%T3%TRACE
S(6,6) =T3*T3*TRACE
PP=TRACE*SR
R (L) =T1%PP
R (5) =T2*PP
R (6) =T3%PP
GO TO 450
LOO DO 410 1=L4,6
R(1) = 0.0
SA(2,1) = 0.0
00 410 J
410 S(1,J)
450 DO 500
DO 500
500 S(J,1)
D0 520
00 520
520 P(1,J)=
530 NN = NP
NNI=NI
NNJ=NJ
NNK=NK
NNL=NL
NKD=KD
NKR=KR
SSD=SD
SSR=SR
TTR=TRACE
GO TO 560
550 MARK=1
555 NN=NN+KG
NN1=NNI+KG
560 KEL = NE+]
WRITE (6,2010) KEL,NN,NNI,NNJ,NNK,NNL,NKD,NKR,KN,SSD,SSR, TTR
NE=NE+]
Cxxkx DATA PORTHOLE SAVE
| F (MODEX.EQ.1)
*WRITE (NTB) NE,NN,NNI,NNJ,NNK,NNL,NKD,NKR,SSD,SSR,TTR

o

« —
e v O
*FrZ ZZ-

O -0 0O
-
[
~—

~ 0 R 0uwmNn R

o —
"
o
x
g
o
=

DO 600 I=1,ND
600 LM(1)=1D(NN, 1)
c
NDM=24
CALL CALBAN (MBAND,NDIF,LM,XM,S,P,ND,NDM,NS)
I'F (MODEX.EQ.1) GO TO 650

F

c

c

C

(@]

OO0 00

ILE: PSAP FRC A OLD DOMINION UNIVERSITY

WRITE (1) ND,NS, (LM(L),L=1,ND), ((SA(L,K),L=1,NS),K=1,ND),
1 ((TT(L,K),L=1,NS) ,K=1,4)

650 CONTINUE
IF (NE.EQ.NUMEL) RETURN
IF (NN.LT.NP) GO TO 555
IF (MARK.EQ.1) GO TO 210
GO TO 200

1000 FORMAT (815,3F10.0)
1005 FORMAT (LF10.0)

2000 FORMAT (34LHIB O UND ARY ELEMENTS, ///
1 27H ELEMENT TYPE = 7, /
2 21H NUMBER OF ELEMENTS =, 16 /77 1X)
2005 FORMAT (30H ELEMENT LOAD CASE MULTIPLIERS, // 8X,7HCASE (A),8X,
1 JHCASE (B) , 8X, 7HCASE (C) ,8X, 7HCASE (D) ,/ LF15.L /// 1X)
2007 FORMAT (53H ELEMENT NODE NODES DEFINING CONSTRAINT DIRECTION,
1 3X, 38HCODE CODE GENERATION SPECIFIED,6X,
2 22HSPECIFIED SPRING, /
3 53H NUMBER (N) (N1) (NJ) (NK) (NL) ,
L 3X,38H KD KR CODE (KN) DISPLACEMENT, 6X,
5 22H ROTATION RATE, / 1X)
2010 FORMAT (1X,2(2X,15),2X,4 (4X,15),2(2X,15),7X,15,2E15.4,E13.4)
END

SUBROUTINE CROSS(A,B,C)
CALLED BY? PLNAX

DIMENSION A (L) ,B(4),C (&)
X=A (2) *B (3) -A (3) *B (2)
Y=A(3) *B (1) -A (1) *B (3)
Z=A (1) *B (2) -A (2) *B (1)

C (L) =SQRT (X%kX+Y*Y+2*Z)
C(3)=Z/C (&)

c(2)=Y/C (L)

C(1)=X/C (&)

RETURN

END

SUBROUTINE CR0OSS2 (A,B,C,IERR)

CALLED BY ? INP21]

THIS ROUTINE FORMS THE VECTOR PRODUCT C = A*B WHERE *C*
IS NORMALIZED TO UNIT LENGTH

DIMENSION A(3),B(3),C(3)

X = A(2) *B(3) - A(3) * B(2)
Y = A(3) *B(1) - A(1) * B(3)
Z=A() *B(2) - A(2) * B(1)
XLN =SQRT (X#X+Y*Y+Z*Z)

|ERR = |

IF (XLN.LE.1.0E-08) RETURN

FILE:

OO0 O0OO0O0O00000O00000

fekkk

ekt

10

20

30
)
50

PSAP FRC A OLD DOMINION UNIVERSITY

XLN = 1.0 /XLN

C(3) =Z * XLN

C{2) =Y % XLN

C(1) = X * XLN

IERR = 0

RETURN

END

SUBROUTINE CSTSTR (SCST,XST)

CALLED BY? STRETR

THIS SUBROUTINE FORMS THE STRESS/DISPLACEMENT TRANSFORMATION
MATRIX FOR A CONSTANT STRAIN TRIANGLE (CST)

I NPUTS
A,B,C AS IN SLST.
OUTPUTS

SCST(1,J) I=1...3,J=1...6. MEMBRANE STRESSES SIG(XX)/(1=1),
SIG(YY)/(1=2), SIG(XY)/(1=3). IN-PLANE NODAL
DISPLACEMENTS U(1)/(J=1), U(2)/(U=2), U(3)/ (J=3),
v(1)/(J=k), V(2)/(J=5), V(3)/(J=6).

COM<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>